
ACC++ Manual
Everything you could ever want to

know about ACS

Table of Contents
Introduction..I

Introduction to the Manual...II
Introduction to ACS and ACS++..II

Byte Code...1
Data Types and Other Numbers..2

Script Types..2
Script Flags...3
Magic Limits..3

Variable Scope and Arrays..3
Detecting Byte Code Format...4
ACS0 Script Directory And Byte Code..4
ZDoom Enhanced Formats...5

ARAY, AINI, and AIMP Chunks..5
ASTR and MSTR Chunks..5
LOAD Chunk...6
FUNC and FNAM Chunks...6
MEXP, MINI, and MIMP Chunks..6
SPTR, SFLG, and SVCT Chunks...7
STRL and STRE Chunks..8

Appendix A: Script Optimizations...9
Solving Runaway Scripts..10

Avoid Providing Optional Arguments..10
Use “const:” Where Possible..10

Appendix B: PCode Reference..11
PCode Table..12
Additional Functions...25

ACC++ Manual

Introduction

II ACC++ Manual

Introduction to the Manual

This manual is going to be written as I design and write the ACC++ compiler. My hopes
are that the manual will describe anything and everything related to ACS. Although the ACC++
project is primarily focused around utilizing the features of ZDoom, included will be
documentation on the original byte code format as well as any other extensions that I may
stumble upon.

Seeing that I plan on writing this as I go, the beginning will focus mostly on the byte code
of ACS. From there I will describe the features of the ACS and ACS++ languages along with
any differences from the implementation of ACC. I will not describe the functionality of each
individual action special as they are all processed by the lspec instructions. A good reference for
the functionality of these action specials would be the ZDoom wiki.1 Although I will briefly
cover the byte code for each built in instruction I will still expect some external reference for
specific details.2

Introduction to ACS and ACS++

ACS is a scripting language that was designed by Raven Software for use within Hexen.
ACS provides a form of C style scripting which vastly expands the capabilities of the Doom
engine. The source to the compiler, ACC, has been released by Raven software under a
restrictive license. This code base has been used to create the compiler used by ZDoom. ZDoom
uses a greatly expanded version of ACS which can be described as the de facto implementation
due to its popularity.

Some of ZDoom's extensions, namely arrays, provided the base for which ACS++ can
operate on. Specifically global arrays have no definite bounds, which is a property that will be
used by ACC++ to allow a form of pointers, and by extension OOP to be possible. Other
features implemented by ZDoom will also play a major role within ACS++, such as functions
and libraries.

The ACC++ project was started on June 3rd, 2010 after much anticipation from the Doom
community (although planning was started as far back as February of 2010). It is licensed under
the 3-clause BSD license in hopes that it can be used in various Doom projects, such as within
ZDoom itself. ACC++ is a drop in replacement for ACC and will be backwards compatible with
existing implementations of the ACS virtual machine, although certain ZDoom extensions will
be needed in order to use the ACS++ language.

As a replacement for ACC, ACC++ does not plan on extending the byte code format
where possible, and will not specifically allow anything new to be created. Although the
availability of object oriented concepts should make some things that would be otherwise
difficult to manage a bit easier. In addition ACC++ will not provide complete compatibility with
ACS (think C++ vs. C), but should allow existing code to compile with some minor changes.

1 Action special reference can be found at the following location: http://zdoom.org/wiki/Action_specials
2 Reference for the “built in” functions can also be found on the ZDoom wiki: http://zdoom.org/wiki/Built-

in_ACS_functions

http://zdoom.org/wiki/Action_specials
http://zdoom.org/wiki/Built-in_ACS_functions
http://zdoom.org/wiki/Built-in_ACS_functions

ACC++ Manual

Byte Code

2 ACC++ Manual

Data Types and Other Numbers

Before reaching into the detailed specification for the ACS byte code format, we will
define our data types. Excepting for strings, all data types will be stored in little endian byte
order (least significant first). Strings will be stored as they are seen ending in a '\0' byte unless
otherwise noted.

For the purposes of this textbook signed values should be assumed unless otherwise
noted. The data type int will be used to represent a 32-bit integer, short for 16-bit, and char for
8-bit (with a string being an array of chars). The floating point type float will be 32-bit and
double for 64-bit.

Script Types

In order to handle various events on the map scripts are given one of the following types.
These will be referred to as ScriptType within this document.

0. CLOSED A normal script with no special trigger.

1. OPEN Script that is executed at the start of a game (world). It must be called
only once per map, UNLOADING can be used for returns.

2. RESPAWN Script that is executed by the player on respawn.

3. DEATH Script that is executed by the player when they are killed.

4. ENTER Script that is executed by the player when they enter the game. If
spectating is supported then this should only be when the player
enters the game physically. Should only be executed once per player.

5. PICKUP* Executes whenever a flag (for any team) is picked up in CTF.

6. BLUERETURN* Executed when the blue team's flag is returned in CTF.

7. REDRETURN* Executed when the red team's flag is returned in CTF.

8. WHITERETURN* Executed with the white flag is returned in one flag CTF.

Types 9 through 11 are undefined.

12. LIGHTNING Executes whenever lightning strikes on the map.

13. UNLOADING Executed by the world before the level is finished. It should be
executed until the first delay, at which point execution may continue
only if the level is returned to.

14. DISCONNECT Should take one argument, which will be filled with the player
number of the disconnecting player. Note that in ports that allow
spectating this should also happen if the player turns into a spectator.

15. RETURN Like ENTER, but executed when the player returns to the map.

* These were defined for Skulltag's capture the flag game modes. They can be considered deprecated.

Byte Code 3

Script Flags

In addition to the script type a script may have flags associated which change how the
script is executed. Within this document these will be referred to as ScriptFlags.

1. NET Allows the player to “puke” the script. (That is execute from the
console or by button press.)3

2. CLIENTSIDE Causes the script to be executed by the client in a client server model.
This implies that the server does not need to be informed of any
changes to the script. Also, any script not carrying this flag is
assumed to be server side only.

Magic Limits

Since ZDoom has changed many of the hard limits I feel it's worth documenting these
changes. Here is a table of some of the magic numbers with their old and new values.

Limitation Hexen ZDoom

Scripts 64 1000

Map Variables 32 128

Script Variables 10 204

World Variables 64 256

Strings 128 32768

Global Variables N/A 64

Functions N/A 256

Translations N/A 32

Variable Scope and Arrays

Due to the various references to scope throughout the byte code documentation it is worth
taking some time here to note what each scope means. In general there are 4 scopes in ACS,
local, map, world, and global. The last one, global, is an addition by ZDoom, but will be an
important role in ACS++.

The local scope is simply all of the variables within a script or function. These are
automatically assigned indexes by the compiler. Each script or function should have it's own
local scope.

The map scope are those global to a particular behavior lump. It may also include
variables pulled in from a library. These, like those in the local scope, are also automatically
assigned their indexes. One major difference between map variables and local variables is that
map variables can be an array. Exclusive to the map scope arrays is the ability to be initialized

3 At one point in time this flag also implied CLIENTSIDE in Skulltag, however due to incompatibility issues this
has been changed to only mean “can be puked.”

4 Can be increased with SVCT chunks.

4 ACC++ Manual

during their definition.

The world scope contains variables that are carried over through an entire hub. When not
in a hub they are functionally identical to map variables. However due to the ability to be carried
over maps they must be manually assigned their index and can not be initialized during defintion.

The last scope, introduced by ZDoom, is global. These variables are carried during game
play to all maps until a new game starts. These are useful for tracking stats between levels and
will be the basis for the memory heap in ACS++. Otherwise they are very similar to world
variables.

Some things to note about world and global arrays. First is that they do not share their
indexes with world and global variables. ZDoom defines a limit of 256 world variables and
arrays, and 64 global variables and arrays. The second important feature is that they world and
global arrays have no defined size. An ACS++ conforming VM must have the ability to
dynamically resize these arrays.

Detecting Byte Code Format

As of this writing there are three known byte code formats. The first we'll be covering is
the Hexen byte code format, henceforth known as ACS0, which can be identified by the 4-byte
header of “ACS\0”. ZDoom introduces two enhanced byte code formats. The first being ACSE,
and the latter being ACSe.

Although not required, ZDoom's ACC generally generates an empty ACS0 script at the
beginning of the file and thus the detection of the format is not entirely straightforward.

Type Name Description

char[4] Identifier May be “ACS\0”, “ACSE”, or “ACSe”

int DirOffset

If the Identifier is ACSE or ACSe our work is done, otherwise we need to check the
char[4] at the DirOffset-4. If this is ACSE or ACSe then we need to switch to the respective
format. In that case we will need to get our new DirOffset from DirOffset-8.

ACS0 Script Directory And Byte Code

At DirOffset the first int represents the number of scripts within the lump. The number of
scripts is followed by that many pointers. These pointers are in the following format.

Type Name Description

int Number The actual number is this int mod 1000. This number divided by 1000 will
represent the ScriptType.

int Address Position in which the script starts.

int ArgCount The number of arguments the script takes. Due to limitations this should be no
larger than 3.

Byte Code 5

After the script pointers is an int for the number of strings in the strings table. This will
be followed by the same amount of ints referencing the position within the lump at which the
string starts. All strings are standard NULL terminated char arrays.

An ACS0 script is relatively straightforward. It consists of an int for the pcode followed
by additional ints for any parameters the pcode may take. This is repeated until
PCD_TERMINATE is reached. See appendix B for a list of pcodes and their functions.

ZDoom Enhanced Formats

ZDoom offers two enhanced byte code formats. Both ACSE and the newer ACSe are
chunk based. As such the DirOffset from the header now indicates the offset to the start of the
chunk data rather than an actual directory. Below is the format of the chunk header.

Type Name Description

char[4] Identifier

int Size

None of the chunks are required, however some of the chunks can be assumed that there
are only one instance of them. In this documentation you may assume that you should only find
one of each chunk unless otherwise specified.

ARAY, AINI, and AIMP Chunks

The ARAY chunk holds information about the map arrays defined in the script. The
number of arrays can be found by dividing the chunk size by 8. The format for each array is an
int for the array's number followed by an int for the size of the array.

An AINI chunk initializes one of the arrays defined in the ARAY chunk. There can be as
many of these chunks as there are map arrays defined in the ARAY chunk. The format is an int
followed by one int for each element in the array as defined in ARAY.

The AIMP chunk is used to list information on the arrays that have been imported from a
library. It first has an int for the number of arrays that have been imported which will be
followed by one of the following structures for each array.

Type Name Description

int Number

int Size Expected size.

char[] Name Null terminated string.

ASTR and MSTR Chunks

These chunks are used in libraries to notify of variables and arrays that hold string values.
They will have to be tagged at run time with an identifier. This identifier is stored in the upper

6 ACC++ Manual

16-bits of the string's index just as the tagstring instruction does.

The MSTR chunk is for map variables. The number of variables referenced can be found
by dividing the chunk size by 4 and will be followed by that many ints referencing the map
variables by their index.

The ASTR chunk does the same for map arrays. Same format is MSTR except the
variable index refers to an array. Note that you will have to flag all the strings in the array based
on the size found in the AIMP chunk.

LOAD Chunk

This chunk provides the name of a library in which to load. The chunk is simply a list of
null terminated string with the library name. As of this writing these should not be more than 8
characters. The only way to determine how many names there are is by checking to see if the
chunk size has been reached.

FUNC and FNAM Chunks

The FUNC chunk holds information about the various functions that are in the script.
The number of functions can be determined by dividing the chunk size by 8. For each function
the following structure is used.

Type Name Description

char NumArgs

char NumVars

char HasReturn Actually a boolean.

char Always 0.

int Address Lump offset to the start of the function's code.

The FNAM chunk is a string table which indexes the names of each function in the lump.
For information on the formatting of the string tables see the STRL and STRE chunks
documentation.

MEXP, MINI, and MIMP Chunks

The MINI and MIMP chunks are similar to the array counterparts AINI and AIMP. An
MINI chunk initializes the map variables. The format is an int for the number of map variables
initialized followed by one int for each variable's value.

The MIMP chunk is used to list information on the map variables that have been imported
from a library. This chunk is just a list of the following structures, so you will need to check
against the chunk size to determine the number of variables imported.

Byte Code 7

Type Name Description

int Number

char[] Name Null terminated string.

The MEXP chunk is used in the lump for a library to store string table with the names of
the map variables. See the STRL and STRE chunks for more details.

SPTR, SFLG, and SVCT Chunks

The SFLG chunk is an additional chunk used to define the ScriptFlags for a particular
script. The number of scripts referenced can be found by dividing the chunk size by 4. It will be
followed by that many of the following structures.

Type Name Description

short ScriptNumber

short ScriptFlags See ScriptFlags reference in Data Types and Other Numbers.

The SVCT flag changes the limit on the number of local variables a script can use (the
default limit is 20). The format of this chunk is the same as SFLG except the ScriptFlags would
represent the number of local variables available.

The SPTR chunk is the replacement for the script directory. It also is what makes the
difference between the ACSe and ACSE formats. For the sake of chronological order, I'll be
documenting the ACSe version first.

For ACSe the number of scripts defined by the SPTR chunk is the chunk size divided by
12. It will be followed by that many of the following structure.

Type Name Description

short ScriptNumber

short ScriptType See ScriptType reference in Data Types and Other Numbers.

int Address Relative to the entire lump.

int ArgCount

For ACSE the number of script is defined by the size of the chunk divided by 8. The
structures will be in the following format.

Type Name Description

short ScriptNumber

char ScriptType See ScriptType reference in Data Types and Other Numbers.

char ArgCount

int Address Relative to the entire lump.

8 ACC++ Manual

STRL and STRE Chunks

These are the string table chunks. STRL is a normal string table and STRE is an
encrypted string table (encryption is enabled through ACC's #encryptstrings option). The format
of the standard string tables are an int that is wasted, an int for the number of strings in the table,
followed by another wasted int. This will be followed by an int for each string in the table which
represents the offset to that string in the chunk (note that these will also be part of the keys
during encryption).

The encryption uses a fairly simple algorithm in which encryption and unencryption is
done through the same process. The encryption key is the offset in the chunk to the string
multiplied by 157,135. With the key, loop through each character taking the exclusive or of the
character with the key+x where x is the character number divided by two.

A note about other string table chunks (FNAM, and MEXP), their format does differ
slightly in that the two wasted ints do not exist.

ACC++ Manual

Appendix A: Script Optimizations

10 ACC++ Manual

Solving Runaway Scripts

At least in ZDoom, an instruction limit is imposed for every tic. This limit is 500,000
instructions. In general you should not reach this limit, however if you do here are a few tips on
how to avoid it. Keep in mind that most of the time when this limit is reached it is because of
loops or recursive functions. Therefor even if it may seem like these techniques only save an
instruction or two you might end up saving more than you think.

Avoid Providing Optional Arguments

Whenever possible you should avoid providing the optional arguments. Unless you are
using a constant expression, each argument produces at least one push instruction which counts
towards your limit. For example, if you use the ACS_Execute function and you don't need to
pass in any arguments only provide the fist two. See the following code:

#include “zcommon.acs”
script 1 (void)
{

// This call will use 5 push instructions followed by an lspec5.
ACS_Execute(2, 0, 0, 0, 0);

// This functionally identical call will use 2 push instructions and lspec2.
ACS_Execute(2, 0);

}

Use “const:” Where Possible

Probably the simplest thing to do provided none of your arguments are expressions.
Simply place “const:” before the first argument on your action special calls and avoid using push
instructions completely. Observe the following:

#include “zcommon.acs”
script 1 (void)
{

// 6 instructions
ACS_Execute(2, 0, 0, 0, 0);

// 1 instruction
ACS_Execute(const:2, 0, 0, 0, 0);

}

In addition to all line specials, you can use const on any of the following functions:
Delay, Random, ThingCount, TagWait, PolyWait, ChangeFloor, ChangeCeiling, ScriptWait,
SetGravity, SetAirControl, GiveInventory, TakeInventory, CheckInventory, Spawn, SpawnSpot,
SetMusic, LocalSetMusic, and SetFont.

This can not be combined with leaving out optional arguments for the purposes of saving
“cycles,” however you may do so in order to save space on the compiled byte code.

ACC++ Manual

Appendix B: PCode Reference

12 ACC++ Manual

PCode Table

In all there are 352 defined PCodes. The extension column states what engine introduced
the PCode. Required indicates if it is needed for ACS++. In addition all Hexen PCodes are
listed as required. “St. Of.” (stack offset) indicates the expected shift in stack size. The codes
highlighted in gray are named however are not, and to my knowledge never have been, defined
programmatically.

For most functions I'll just say “See FunctionName(<num parameters>[, <max
parameters>]).” The number of parameters is a constant in the byte code, so the number of
optional parameters is merely provided here for reference purposes. To learn more about these
functions I recommend checking out the page on the ZDoom wiki. (http://zdoom.org/wiki/Built-
in_ACS_functions)

It is important to note that for function calls in ACS, the first item pushed onto the stack
is the first argument, the next would be the second argument and so forth. Likewise when
performing operations the first item pushed onto the stack is the operand to the left of the
operator and the second item would be the right operand. That said when I describe which stack
item to use for what I will be using “1st” to mean the top of the stack and not the first item
pushed.

PCode Args St.Of. Ext Req Description

0 nop 0 0 Hexen X Does nothing

1 terminate 0 0 Hexen X Finishes the current script.

2 suspend 0 0 Hexen X
Holds the execution of the script until it is executed
again, at which point it will resume.

3 pushnumber 1 1 Hexen X Pushes an int onto the stack.

4 lspec1 1 -1 Hexen X
Executes the line special using removing one argument
from the stack.

5 lspec2 1 -2 Hexen X Same as lspec1 only uses 2 args from the stack.

6 lspec3 1 -3 Hexen X Same as lspec1 only uses 3 args from the stack.

7 lspec4 1 -4 Hexen X Same as lspec1 only uses 4 args from the stack.

8 lspec5 1 -5 Hexen X Same as lspec1 only uses 5 args from the stack.

9 lspec1direct 2 0 Hexen X
Executes the line special in the first arg with one
constant parameter.

10 lspec2direct 3 0 Hexen X Same as lspec1direct only with 2 arguments.

11 lspec3direct 4 0 Hexen X Same as lspec1direct only with 3 arguments.

12 lspec4direct 5 0 Hexen X Same as lspec1direct only with 4 arguments.

13 lspec5direct 6 0 Hexen X Same as lspec1direct only with 5 arguments.

14 add 0 -1 Hexen X
Adds the last two items from the stack, pushing the
result.

http://zdoom.org/wiki/Built-in_ACS_functions
http://zdoom.org/wiki/Built-in_ACS_functions

Appendix B: PCode Reference 13

PCode Args St.Of. Ext Req Description

15 subtract 0 -1 Hexen X
Subtracts the last two items from the stack pushing the
result.

16 multiply 0 -1 Hexen X
Multiplies the last two items from the stack pushing
the result.

17 divide 0 -1 Hexen X
Divides the last two items from the stack pushing the
result. Errors on division by zero.

18 modulus 0 -1 Hexen X
Calculates the remainder of division of the last two
items on the stack, pushing the result. Errors on
modulus by zero.

19 eq 0 -1 Hexen X
Pushes 1 to the stack if the last two items are
equivalent, otherwise pushes 0.

20 ne 0 -1 Hexen X
Pushes 1 to the stack if the last two items are not
equivalent, otherwise pushes 0.

21 lt 0 -1 Hexen X
Pushes 1 to the stack if the 2nd item in the stack is less
than the 1st, otherwise pushes 0.

22 gt 0 -1 Hexen X
Pushes 1 to the stack if the 2nd item in the stack is
greater than the 1st, otherwise pushes 0.

23 le 0 -1 Hexen X
Pushes 1 to the stack if the 2nd item in the stack is less
or equal to the 1st, otherwise pushes 0.

24 ge 0 -1 Hexen X
Pushes 1 to the stack if the 2nd item in the stack is
greater than or equal to 1st, otherwise pushes 0.

25 assignscriptvar 1 -1 Hexen X
Assigns the value on the stack to the specified local
variable.

26 assignmapvar 1 -1 Hexen X
Assigns the value on the stack to the specified map
variable.

27 assignworldvar 1 -1 Hexen X
Assigns the value on the stack to the specified world
variable.

28 pushscriptvar 1 1 Hexen X Pushes the value of the local variable onto the stack.

29 pushmapvar 1 1 Hexen X Pushes the value of the map variable onto the stack.

30 pushworldvar 1 1 Hexen X Pushes the value of the world variable onto the stack.

31 addscriptvar 1 -1 Hexen X Adds the stack to the specified local variable.

32 addmapvar 1 -1 Hexen X Adds the stack to the specified map variable.

33 addworldvar 1 -1 Hexen X Adds the stack to the specified world variable.

34 subscriptvar 1 -1 Hexen X Subtracts the stack from the specified local variable.

35 submapvar 1 -1 Hexen X Subtracts the stack from the specified map variable.

36 subworldvar 1 -1 Hexen X Subtracts the stack from the specified world variable.

37 mulscriptvar 1 -1 Hexen X Multiplies the stack to the specified local variable.

38 mulmapvar 1 -1 Hexen X Multiplies the stack to the specified map variable.

39 mulworldvar 1 -1 Hexen X Multiplies the stack to the specified world variable.

14 ACC++ Manual

PCode Args St.Of. Ext Req Description

40 divscriptvar 1 -1 Hexen X
Divides the stack from the specified local variable.
Errors on division by zero.

41 divmapvar 1 -1 Hexen X
Divides the stack from the specified map variable.
Errors on division by zero.

42 divworldvar 1 -1 Hexen X
Divides the stack from the specified world variable.
Errors on division by zero.

43 modscriptvar 1 -1 Hexen X Takes modulus of the local variable by the stack.

44 modmapvar 1 -1 Hexen X Takes modulus of the map variable by the stack.

45 modworldvar 1 -1 Hexen X Takes modulus of the world variable by the stack.

46 incscriptvar 1 0 Hexen X Increments the local variable by one.

47 incmapvar 1 0 Hexen X Increments the map variable by one.

48 incworldvar 1 0 Hexen X Increments the world variable by one.

49 decscriptvar 1 0 Hexen X Decrements the local variable by one.

50 decmapvar 1 0 Hexen X Decrements the map variable by one.

51 decworldvar 1 0 Hexen X Decrements the world variable by one.

52 goto 1 0 Hexen X Sets the script execution to the offset specified.

53 ifgoto 1 -1 Hexen X
Same as goto except it first checks to see if the stack
doesn't equal zero.

54 drop 0 -1 Hexen X Removes one value from the stack.5

55 delay 0 -1 Hexen X
Causes the script to wait for the number of tics
specified on the stack. See also Delay(2).

56 delaydirect 1 0 Hexen X Same as delay only with constant parameters.

57 random 0 -1 Hexen X
Picks a random number inclusively between the last
two items on the stack. See also Random(2).

58 randomdirect 2 1 Hexen X Same as random only uses constant parameters.

59 thingcount 0 -1 Hexen X See ThingCount(2)

60 thingcountdirect 2 1 Hexen X Same as thingcount, uses constant parameters.

61 tagwait 0 -1 Hexen X
Waits for the tag in the stack to finish moving. See
also TagWait(1).

62 tagwaitdirect 1 0 Hexen X Same as tagwait, uses constant parameters.

63 polywait 0 -1 Hexen X
Waits for the polyobj number in the stack to finish
moving. See PolyWait(1).

64 polywaitdirect 1 0 Hexen X Same as polywait, uses constant parameters.

65 changefloor 0 -2 Hexen X See ChangeFloor(2).

66 changefloordirect 2 0 Hexen X Same as changefloor, uses constant parameters.

67 changeceiling 0 -2 Hexen X See ChangeCeiling(2).

5 In ZDoom this is handled identically to the PCode setresultvalue.

Appendix B: PCode Reference 15

PCode Args St.Of. Ext Req Description

68 changeceilingdirect 2 0 Hexen X Same as changeceiling, uses constant parameters.

69 restart 0 0 Hexen X
Sets the script execution offset back to the beginning
of the script.

70 andlogical 0 -1 Hexen X
Pushes 1 if the last two items on the stack are true,
otherwise pushes 0.

71 orlogical 0 -1 Hexen X
Pushes 1 if either of the last two items on the stack are
true, otherwise pushes 0.

72 andbitwise 0 -1 Hexen X
Performs a bitwise and operation on the last two items
on the stack, pushing the result.

73 orbitwise 0 -1 Hexen X
Performs a bitwise or optionation on the last two items
on the stack, pushing the result.

74 eorbitwise 0 -1 Hexen X
Performs a bitwise exclusive or optionation on the last
two items on the stack, pushing the result.

75 negatelogical 0 0 Hexen X
Switches the last item on the stack from true to false or
vice versa.

76 lshift 0 -1 Hexen X
Performs a left shift operation on the last two items on
the stack, pushing the result.

77 rshift 0 -1 Hexen X
Performs a right shift operation on the last two items
on the stack, pushing the result.

78 unaryminus 0 0 Hexen X
Changes the last item on the stack from positive to
negative or vice versa.

79 ifnotgoto 1 -1 Hexen X
Sets the script execution to the offset specified only if
the stack is not true.

80 lineside 0 1 Hexen X See LineSize(0).

81 scriptwait 0 -1 Hexen X See ScriptWait(1).

82 scriptwaitdirect 1 0 Hexen X Same as scriptwait, uses constant parameters.

83 clearlinespecial 0 0 Hexen X See ClearLineSpecial(0).

84 casegoto 2 -1 Hexen X
Sets the execution to the 2nd parameter if the stack is
equal to the 1st.

85 beginprint 0 0 Hexen X
Starts collecting information for the print or printbold
functions.

86 endprint 0 0 Hexen X Finishes a print() call.

87 printstring 0 -1 Hexen X Adds the string referenced by the stack to the print.

88 printnumber 0 -1 Hexen X Adds the number referenced by the stack to the print.

89 printcharacter 0 -1 Hexen X Adds the character referenced by the stack to the print.

90 playercount 0 1 Hexen X See PlayerCount(0).

91 gametype 0 1 Hexen X See GameType(0).

92 gameskill 0 1 Hexen X See GameSkill(0).

93 timer 0 1 Hexen X See Timer(0).

16 ACC++ Manual

PCode Args St.Of. Ext Req Description

94 sectorsound 0 -2 Hexen X See SectorSound(2).

95 ambientsound 0 -2 Hexen X See AmbientSound(2).

96 soundsequence 0 -1 Hexen X See SoundSequence(1).

97 setlinetexture 0 -4 Hexen X See SetLineTexture(4).

98 setlineblocking 0 -2 Hexen X See SetLineBlocking(2).6

99 setlinespecial 0 -7 Hexen X See SetLineSpecial(2,7).

100 thingsound 0 -3 Hexen X See ThingSound(3).

101 endprintbold 0 0 Hexen X
Finishes the “bold” print statement. All players should
receive this message.

102 activatorsound 0 -2 ZDoom See ActivatorSound(2).

103 localambientsound 0 -2 ZDoom See LocalAmbientSound(2).

104 setlinemonsterblocking 0 -2 ZDoom See SetLineMonsterBlocking(2).

105 playerblueskull 0 1 Skulltag Pushes -1 to the stack.

106 playerredskull 0 1 Skulltag Pushes -1 to the stack.

107 playeryellowskull 0 1 Skulltag Pushes -1 to the stack.

108 playermasterskull Skulltag Completely undefined at this time.

109 playerbluecard 0 1 Skulltag Pushes -1 to the stack.

110 playerredcard 0 1 Skulltag Pushes -1 to the stack.

111 playeryellowcard 0 1 Skulltag Pushes -1 to the stack.

112 playermastercard Skulltag Completely undefined at this time.

113 playerblackskull Skulltag Completely undefined at this time.

114 playersilverskull Skulltag Completely undefined at this time.

115 playergoldskull Skulltag Completely undefined at this time.

116 playerblackcard Skulltag Completely undefined at this time.

117 playersilvercard Skulltag Completely undefined at this time.

118 playeronteam Skulltag Completely undefined at this time.

119 playerteam 0 1 Skulltag See PlayerTeam(0).

120 playerhealth 0 1 Skulltag See PlayerHealth(0).

121 playerarmorpoints 0 1 Skulltag See PlayerArmorPoints(0).

122 playerfrags 0 1 Skulltag See PlayerFrags(0).

123 playerexpert Skulltag Completely undefined at this time.

124 blueteamcount 0 1 Skulltag See BlueCount(0).

125 redteamcount 0 1 Skulltag See RedCount(0).

6 In Hexen it may be assumed that the second argument to this function is a boolean, however other ports have
extended this to include multiple flags.

Appendix B: PCode Reference 17

PCode Args St.Of. Ext Req Description

126 blueteamscore 0 1 Skulltag See BlueScore(0).

127 redteamscore 0 1 Skulltag See RedScore(0).

128 isoneflagctf 0 1 Skulltag See IsOneFlagCTF(0).

129 getinvasionwave 0 1 Skulltag See GetInvasionWave(0).

130 getinvasionstate 0 1 Skulltag See GetInvasionState(0).

131 printname 0 -1 Skulltag
Adds the name of the player referenced by the number
on the stack to the current print.

132 musicchange 0 -2 Skulltag See Music_Change(2).

133 consolecommanddirect 3 0 Skulltag
Takes the specified command and executes it.7 Last
two parameters are unused.

134 consolecommand 0 -3 Skulltag
Same as consolecommanddirect, except it reads from
the stack.

135 singleplayer 0 1 Skulltag
Pushes 1 to the stack if playing in single player
otherwise pushes 0.

136 fixedmul 0 -1 ZDoom X
Multiplies the last two fixed point numbers on the
stack and pushes the result.

137 fixeddiv 0 -1 ZDoom X
Divides the last two fixed point numbers on the stack
and pushes the result.

138 setgravity 0 -1 ZDoom See SetGravity(1).

139 setgravitydirect 1 0 ZDoom Same as setgravity, uses constant parameters.

140 setaircontrol 0 -1 ZDoom See SetAirControl(1).

141 setaircontroldirect 1 0 ZDoom Same as setaircontrol, uses constant parameters.

142 clearinventory 0 0 ZDoom See ClearInventory(0).

143 giveinventory 0 -2 ZDoom See GiveInventory(2).

144 giveinventorydirect 2 0 ZDoom Same as giveinventory, uses constant parameters.

145 takeinventory 0 -2 ZDoom See TakeInventory(2).

146 takeinventorydirect 2 0 ZDoom Same as takeinventory, uses constant parameters.

147 checkinventory 0 0 ZDoom See CheckInventory(1).

148 checkinventorydirect 1 0 ZDoom Same as checkinventory, uses constant parameters.

149 spawn 0 -5 ZDoom See Spawn(4,6). Pushes 1 on success 0 on failure.

150 spawndirect 6 0 ZDoom Same as spawn, uses constant parameters.

151 spawnspot 0 -3 ZDoom See SpawnSpot(2,4). Pushes 1 on success 0 on failure.

152 spawnspotdirect 4 0 ZDoom Same as spawnspot, uses constant parameters.

153 setmusic 0 -3 ZDoom See SetMusic(1,3).

154 setmusicdirect 3 0 ZDoom Same as setmusic, uses constant parameters.

7 It is worth noting here that consolecommand can be a serious security issue. As such I would advise against
implementing it.

18 ACC++ Manual

PCode Args St.Of. Ext Req Description

155 localsetmusic 0 -3 ZDoom See LocalSetMusic(1,3).

156 localsetmusicdirect 3 0 ZDoom Same as localsetmusic, uses constant parameters.

157 printfixed 0 -1 ZDoom Adds the fixed point number on the stack to the print.

158 printlocalized 0 -1 ZDoom
Adds the localized string referenced by the stack to the
print command.

159 morehudmessage 0 0 ZDoom
Effectively ends the print portion of hudmessage. It
does not print the message.

160 opthudmessage 0 0 ZDoom

Sets the position of hudmessage arguments in the stack
to the current stack pointer. Finishing the parameter
section of hudmessage. See hudmessage on the
ZDoom wiki for detailed information on the
parameters.

161 endhudmessage 0 x ZDoom
Finishes an hudmessage command. Removing all
parameters (terminated by opthudmessage) from the
stack.

162 endhudmessagebold 0 x ZDoom
Same as endhudmessage only prints the message to all
players.

163 setstyle ZDoom Completely undefined at this time.

164 setstyledirect ZDoom Completely undefined at this time.

165 setfont 0 -1 ZDoom See SetFont(1).

166 setfontdirect 1 0 ZDoom Same as setfont, uses constant parameters.

167 pushbyte 1 0 ZDoom Pushes a char onto the stack.

168 lspec1directb 2 0 ZDoom Same as lspec1direct except all parameters are chars.

169 lspec2directb 3 0 ZDoom Same as lspec2direct except all parameters are chars.

170 lspec3directb 4 0 ZDoom Same as lspec3direct except all parameters are chars.

171 lspec4directb 5 0 ZDoom Same as lspec4direct except all parameters are chars.

172 lspec5directb 6 0 ZDoom Same as lspec5direct except all parameters are chars.

173 delaydirectb 1 0 ZDoom Same as delaydirect except it takes a char.

174 randomdirectb 2 0 ZDoom Same as randomdirect except all parameters are chars.

175 pushbytes n+1 n ZDoom Pushes n chars to the stack where n is the first char.

176 push2bytes 2 2 ZDoom Pushes 2 chars to the stack.

177 push3bytes 3 3 ZDoom Pushes 3 chars to the stack.

178 push4bytes 4 4 ZDoom Pushes 4 chars to the stack.

179 push5bytes 5 5 ZDoom Pushes 5 chars to the stack.

180 setthingspecial 0 -7 ZDoom See SetThingSpecial(2,7).

181 assignglobalvar 1 -1 ZDoom X
Assigns the value on the stack to the specified global
variable.

Appendix B: PCode Reference 19

PCode Args St.Of. Ext Req Description

182 pushglobalvar 1 1 ZDoom X
Pushes the value of the specified global variable onto
the stack.

183 addglobalvar 1 -1 ZDoom X Adds the value of the stack to the specified global var.

184 subglobalvar 1 -1 ZDoom X
Substracts the value of the stack from the specified
global variable.

185 mulglobalvar 1 -1 ZDoom X Multiplies the global variable by the value on the stack.

186 divglobalvar 1 -1 ZDoom X
Divides the global variable by the value on the stack.
Errors on division by zero.

187 modglobalvar 1 -1 ZDoom X
Does the modulus of the global variable with the value
on the stack. Errors on modulus by zero.

188 incglobalvar 1 0 ZDoom X Increments the global variable by one.

189 decglobalvar 1 0 ZDoom X Decrements the global variable by one.

190 fadeto 0 -5 ZDoom See FadeTo(5).

191 faderange 0 -9 ZDoom See FadeRange(9).

192 cancelfade 0 0 ZDoom See CancelFade(0).

193 playmovie 0 0 ZDoom See PlayMovie(1).

194 setfloortrigger 0 -8 ZDoom See SetFloorTrigger(3,8).

195 setceilingtrigger 0 -8 ZDoom See SetCeilingTrigger(3,8).

196 getactorx 0 1 ZDoom See GetActorX(1).

197 getactory 0 1 ZDoom See GetActorY(1).

198 getactorz 0 1 ZDoom See GetActorZ(1).

199 starttranslation 0 -1 ZDoom
Begins the translation definition for the translation
specified on the stack. See CreateTranslation(2).

200 translationrange1 0 -4 ZDoom
Specifies a translation between palette indexes. Stack
represents 1st:2nd=3rd:4th. See CreateTranslation(2).

201 translationrange2 0 -8 ZDoom
Specifies a translation from palette indexes to RGB
values. Stack represents 1st:2nd=[3rd,4th,5th]:[6th,7th,8th].
See CreateTranslation(2).

202 endtranslation 0 0 ZDoom Finishes a call to CreateTranslation(2).

203 call 1 1 ZDoom X Calls the function specified by index.

204 calldiscard 1 0 ZDoom X
Same as call, except the value returned will not be
pushed to the stack. (Alternatively dropped.)

205 returnvoid 0 1/0 ZDoom X
Returns from a function pushing 0 to the stack unless
called by calldiscard.

206 returnval 0 1/0 ZDoom X
Returns from a function keeping the top value of the
stack unless called by calldiscard.

207 pushmaparray 1 0 ZDoom X
Pushes the value of the specified map array at the
index referenced by the stack.

20 ACC++ Manual

PCode Args St.Of. Ext Req Description

208 assignmaparray 1 -2 ZDoom X
Assigns the value of 1st stack item to the specified map
array at the index referenced by the 2nd item.

209 addmaparray 1 -2 ZDoom X
Adds the value of the 1st stack item to the specified
map array at the index of the 2nd stack item.

210 submaparray 1 -2 ZDoom X
Subtracts the value of the 1st stack item to the specified
map array at the index of the 2nd stack item.

211 mulmaparray 1 -2 ZDoom X
Multiplies the specified map array's index referenced
by the 2nd item on the stack by the 1st.

212 divmaparray 1 -2 ZDoom X
Divides the specified map array's index referenced by
the 2nd item on the stack by the 1st. Errors on division
by zero.

213 modmaparray 1 -2 ZDoom X
Performs the modulus of the specified map array's
index referenced by the 2nd item on the stack by the 1st

item on the stack. Errors on modulus by zero.

214 incmaparray 1 -1 ZDoom X
Increments the specified map array at the index
referenced by the stack by one.

215 decmaparray 1 -1 ZDoom X
Decrements the specified map array at the index
referenced by the stack by one.

216 dup 0 1 ZDoom Pushes the value of the stack to the stack.

217 swap 0 0 ZDoom Switches the last two values on the stack.

218 writetoini ZDoom Completely undefined at this time.

219 getfromini ZDoom Completely undefined at this time.

220 sin 0 0 ZDoom See Sin(1).

221 cos 0 0 ZDoom See Cos(1).

222 vectorangle 0 -1 ZDoom See VectorAngle(2).

223 checkweapon 0 0 ZDoom See CheckWeapon(1).

224 setweapon 0 0 ZDoom See SetWeapon(1).

225 tagstring 0 0 ZDoom X Puts the id of the library into upper 16-bits of the stack.

226 pushworldarray 1 0 ZDoom X
Pushes the value of the specified world array at the
index referenced by the stack.

227 assignworldarray 1 -2 ZDoom X
Assigns the value of 1st stack item to the specified
world array at the index referenced by the 2nd item.

228 addworldarray 1 -2 ZDoom X
Adds the value of the 1st stack item to the specified
world array at the index of the 2nd stack item.

229 subworldarray 1 -2 ZDoom X
Subtracts the value of the 1st stack item to the specified
world array at the index of the 2nd stack item.

230 mulworldarray 1 -2 ZDoom X
Multiplies the specified world array's index referenced
by the 2nd item on the stack by the 1st.

Appendix B: PCode Reference 21

PCode Args St.Of. Ext Req Description

231 divworldarray 1 -2 ZDoom X
Divides the specified world array's index referenced by
the 2nd item on the stack by the 1st. Errors on division
by zero.

232 modworldarray 1 -2 ZDoom X
Performs the modulus of the specified world array's
index referenced by the 2nd item on the stack by the 1st

item on the stack. Errors on modulus by zero.

233 incworldarray 1 -1 ZDoom X
Increments the specified world array at the index
referenced by the stack by one.

234 decworldarray 1 -1 ZDoom X
Decrements the specified world array at the index
referenced by the stack by one.

235 pushglobalarray 1 0 ZDoom X
Pushes the value of the specified global array at the
index referenced by the stack.

236 assignglobalarray 1 -2 ZDoom X
Assigns the value of 1st stack item to the specified
global array at the index referenced by the 2nd item.

237 addglobalarray 1 -2 ZDoom X
Adds the value of the 1st stack item to the specified
global array at the index of the 2nd stack item.

238 subglobalarray 1 -2 ZDoom X
Subtracts the value of the 1st stack item to the specified
global array at the index of the 2nd stack item.

239 mulglobalarray 1 -2 ZDoom X
Multiplies the specified global array's index referenced
by the 2nd item on the stack by the 1st.

240 divglobalarray 1 -2 ZDoom X
Divides the specified global array's index referenced
by the 2nd item on the stack by the 1st. Errors on
division by zero.

241 modglobalarray 1 -2 ZDoom X
Performs the modulus of the specified global array's
index referenced by the 2nd item on the stack by the 1st

item on the stack. Errors on modulus by zero.

242 incglobalarray 1 -1 ZDoom X
Increments the specified global array at the index
referenced by the stack by one.

243 decglobalarray 1 -1 ZDoom X
Decrements the specified global array at the index
referenced by the stack by one.

244 setmarineweapon 0 -2 ZDoom See SetMarineWeapon(2).

245 setactorproperty 0 -3 ZDoom See SetActorProperty(3).

246 getactorproperty 0 -1 ZDoom See GetActorProperty(2).

247 playernumber 0 1 ZDoom See PlayerNumber(0).

248 activatortid 0 1 ZDoom See ActivatorTID(0).

249 setmarinesprite 0 -2 ZDoom See SetMarineSprite(2).

250 getscreenwidth 0 1 ZDoom See GetScreenWidth(0).

251 getscreenheight 0 1 ZDoom See GetScreenHeight(0).

252 thingprojectile2 0 -7 ZDoom See Thing_Projectile2(7).

253 strlen 0 0 ZDoom X See StrLen(1).

22 ACC++ Manual

PCode Args St.Of. Ext Req Description

254 sethudsize 0 -3 ZDoom See SetHudSize(3).

255 getcvar 0 0 ZDoom See GetCVar(1).

256 casegotosorted n+1 -1 ZDoom X

First ensure that your script data pointer is 4 byte
aligned. The first short indicates the number of cases.
The cases should be sorted in such a way that a binary
search may be performed. The case to jump to is the
one where the case matches the stack.

257 setresultvalue 0 -1 ZDoom X Sets the result of the script to the stack.

258 getlinerowoffset 0 1 ZDoom See GetLineRowOffset(0).

259 getactorfloorz 0 0 ZDoom See GetActorFloorZ(0).

260 getactorangle 0 0 ZDoom See GetActorAngle(0).

261 getsectorfloorz 0 -2 ZDoom See GetSectorFloorZ(3).

262 getsectorceilingz 0 -2 ZDoom See GetSectorCeilingZ(3).

263 lspec5result 0 -4 ZDoom X
Same as lspec5 except the result of the special is
pushed onto the stack.

264 getsigilpieces 0 1 ZDoom See GetSigilPieces(0).

265 getlevelinfo 0 0 ZDoom See GetLevelInfo(1).

266 changesky 0 -2 ZDoom See ChangeSky(2).

267 playeringame 0 0 ZDoom See PlayerInGame(1).

268 playerisbot 0 0 ZDoom See PlayerIsBot(1).

269 setcameratotexture 0 -3 ZDoom See SetCameraToTexture(3).

270 endlog 0 0 ZDoom Ends a log call.

271 getammocapacity 0 0 ZDoom See GetAmmoCapacity(1).

272 setammocapacity 0 -2 ZDoom See SetAmmoCapacity(2).

273 printmapchararray 0 -2 ZDoom
Adds the string represented by the character array in
the map array specified by the 1st stack item at the
offset in the 2nd stack item.

274 printworldchararray 0 -2 ZDoom
Adds the string represented by the character array in
the world array specified by the 1st stack item at the
offset in the 2nd stack item.

275 printglobalchararray 0 -2 ZDoom
Adds the string represented by the character array in
the global array specified by the 1st stack item at the
offset in the 2nd stack item.

276 setactorangle 0 -2 ZDoom See SetActorAngle(2).

277 grabinput ZDoom Completely undefined at this time.

278 setmousepointer ZDoom Completely undefined at this time.

279 movemousepointer ZDoom Completely undefined at this time.

280 spawnprojectile 0 -7 ZDoom See SpawnProjectile(7).

Appendix B: PCode Reference 23

PCode Args St.Of. Ext Req Description

281 getsectorlightlevel 0 0 ZDoom See GetSectorLightLevel(1).

282 getactorceilingz 0 0 ZDoom See GetActorCeilingZ(1).

283 getactorpositionz ZDoom Completely undefined at this time.

284 clearactorinventory 0 -1 ZDoom See ClearActorInventory(1).

285 giveactorinventory 0 -3 ZDoom See GiveActorInventory(3).

286 takeactorinventory 0 -3 ZDoom See TakeActorInventory(3).

287 checkactorinventory 0 -1 ZDoom See CheckActorInventory(2).

288 thingcountname 0 -1 ZDoom See ThingCountName(2).

289 spawnspotfacing 0 -2 ZDoom See SpawnSpotFacing(3).

290 playerclass 0 0 ZDoom See PlayerClass(1).

291 andscriptvar 1 -1 ZDoom X
Performs the bitwise and operation with the specified
local variable and the stack.

292 andmapvar 1 -1 ZDoom X
Performs the bitwise and operation with the specified
map variable and the stack.

293 andworldvar 1 -1 ZDoom X
Performs the bitwise and operation with the specified
world variable and the stack.

294 andglobalvar 1 -1 ZDoom X
Performs the bitwise and operation with the specified
global variable and the stack.

295 andmaparray 1 -2 ZDoom X
Performs the bitwise and operation with the specified
map array at the index of the 2nd stack item and the 1st

stack item.

296 andworldarray 1 -2 ZDoom X
Performs the bitwise and operation with the specified
world array at the index of the 2nd stack item and the 1st

stack item.

297 andglobalarray 1 -2 ZDoom X
Performs the bitwise and operation with the specified
global array at the index of the 2nd stack item and the
1st stack item.

298 eorscriptvar 1 -1 ZDoom X
Performs the bitwise exclusive or operation with the
specified local variable and the stack.

299 eormapvar 1 -1 ZDoom X
Performs the bitwise exclusive or operation with the
specified map variable and the stack.

300 eorworldvar 1 -1 ZDoom X
Performs the bitwise exclusive or operation with the
specified world variable and the stack.

301 eorglobalvar 1 -1 ZDoom X
Performs the bitwise exclusive or operation with the
specified global variable and the stack.

302 eormaparray 1 -2 ZDoom X
Performs the bitwise excluse or operation with the
specified map array at the index of the 2nd stack item
and the 1st stack item.

303 eorworldarray 1 -2 ZDoom X
Performs the bitwise excluse or operation with the
specified world array at the index of the 2nd stack item
and the 1st stack item.

24 ACC++ Manual

PCode Args St.Of. Ext Req Description

304 eorglobalarray 1 -2 ZDoom X
Performs the bitwise excluse or operation with the
specified global array at the index of the 2nd stack item
and the 1st stack item.

305 orscriptvar 1 -1 ZDoom X
Performs the bitwise or operation with the specified
local variable and the stack.

306 ormapvar 1 -1 ZDoom X
Performs the bitwise or operation with the specified
map variable and the stack.

307 orworldvar 1 -1 ZDoom X
Performs the bitwise or operation with the specified
world variable and the stack.

308 orglobalvar 1 -1 ZDoom X
Performs the bitwise or operation with the specified
global variable and the stack.

309 ormaparray 1 -2 ZDoom X
Performs the bitwise or operation with the specified
map array at the index of the 2nd stack item and the 1st

stack item.

310 orworldarray 1 -2 ZDoom X
Performs the bitwise or operation with the specified
world array at the index of the 2nd stack item and the 1st

stack item.

311 orglobalarray 1 -2 ZDoom X
Performs the bitwise or operation with the specified
global array at the index of the 2nd stack item and the
1st stack item.

312 lsscriptvar 1 -1 ZDoom X Left shifts the specified local variable by the stack.

313 lsmapvar 1 -1 ZDoom X Left shifts the specified map variable by the stack.

314 lsworldvar 1 -1 ZDoom X Left shifts the specified world variable by the stack.

315 lsglobalvar 1 -1 ZDoom X Left shifts the specified global variable by the stack.

316 lsmaparray 1 -2 ZDoom X
Left shifts the specified map array at the index
referenced by the 2nd stack item by the 1st item.

317 lsworldarray 1 -2 ZDoom X
Left shifts the specified world array at the index
referenced by the 2nd stack item by the 1st item.

318 lsglobalarray 1 -2 ZDoom X
Left shifts the specified global array at the index
referenced by the 2nd stack item by the 1st item.

319 rsscriptvar 1 -1 ZDoom X Right shifts the specified local variable by the stack.

320 rsmapvar 1 -1 ZDoom X Right shifts the specified map variable by the stack.

321 rsworldvar 1 -1 ZDoom X Right shifts the specified world variable by the stack.

322 rsglobalvar 1 -1 ZDoom X Right shifts the specified global variable by the stack.

323 rsmaparray 1 -2 ZDoom X
Right shifts the specified map array at the index
referenced by the 2nd stack item by the 1st item.

324 rsworldarray 1 -2 ZDoom X
Right shifts the specified local array at the index
referenced by the 2nd stack item by the 1st item.

325 rsglobalarray 1 -2 ZDoom X
Right shifts the specified global array at the index
referenced by the 2nd stack item by the 1st item.

326 getplayerinfo 0 -1 ZDoom See GetPlayerInfo(2).

Appendix B: PCode Reference 25

PCode Args St.Of. Ext Req Description

327 changelevel 0 -4 ZDoom See ChangeLevel(3,4).

328 sectordamage 0 -5 ZDoom See SectorDamage(5).

329 replacetextures 0 -3 ZDoom See ReplaceTextures(2,3).

330 negatebinary 0 0 ZDoom X Performs a binary negation on the stack.

331 getactorpitch 0 0 ZDoom See GetActorPitch(1).

332 setactorpitch 0 -2 ZDoom See SetActorPitch(2).

333 printbind 0 -1 ZDoom
Adds the name of the key in which the action
referenced by the stack is bound to the print.

334 setactorstate 0 -2 ZDoom See SetActorState(2,3).

335 thingdamage2 0 -2 ZDoom See Thing_Damage2(3).

336 useinventory 0 0 ZDoom See UseInventory(1).

337 useactorinventory 0 -1 ZDoom See UseActorInventory(2).

338 checkactorceilingtexture 0 -1 ZDoom See CheckActorCeilingTexture(2).

339 checkactorfloortexture 0 -1 ZDoom See CheckActorFloorTexture(2).

340 getactorlightlevel 0 0 ZDoom See GetActorLightLevel(1).

341 setmugshotstate 0 -1 ZDoom See SetMugShotState(1).

342 thingcountsector 0 -2 ZDoom See ThingCountSector(3).

343 thingcountnamesector 0 -2 ZDoom See ThingCountNameSector(3).

344 checkplayercamera 0 0 ZDoom See CheckPlayerCamera(1).

345 morphactor 0 -6 ZDoom See MorphActor(1,7).

346 unmorphactor 0 -1 ZDoom See UnMorphActor(1,2).

347 getplayerinput 0 -1 ZDoom See GetPlayerInput(2).

348 classifyactor 0 0 ZDoom See ClassifyActor(1).

349 printbinary 0 -1 ZDoom Adds the binary number to the print.

350 printhex 0 -1 ZDoom Adds the hexadecimal number to the print.

351 callfunc 2 -n+1 ZDoom X

Calls an alternative type of built in function. The first
char following the PCode is the number of arguments.
The next short is the function index (see below). After
all of the arguments are removed from the stack, the
return value is pushed to the stack. If this is used in
ACS0 the first two parameters are also ints.

Additional Functions

The callfunc PCode references a table of functions. These functions are handled similar
to the normal built in functions, however they are more flexible (argument count is not a constant
for example). The PCode always pushes a return value onto the stack so it must be dropped if it
is to be ignored. Continue to refer to the ZDoom wiki's built in ACS function documentation for
details on their exact operations.

26 ACC++ Manual

Function Args Ret Req

1 GetLineUDMFInt 2 int

2 GetLineUDMFFixed 2 fixed

3 GetThingUDMFInt 2 int

4 GetThingUDMFFixed 2 fixed

5 GetSectorUDMFInt 2 int

6 GetSectorUDMFFixed 2 fixed

7 GetSideUDMFInt 3 int

8 GetSideUDMFFixed 3 fixed

9 GetActorVelX 1 int

10 GetActorVelY 1 int

11 GetActorVelZ 1 int

12 SetActivator 1 bool

13 SetActivatorToTarget 1 bool

14 GetActorViewHeight 1 int

15 GetChar 2 char X

16 GetAirSupply 1 int

17 SetAirSupply 2 bool

18 SetSkyScrollSpeed 2 bool

19 GetArmorType 2 int

20 SpawnSpotForced 4 bool

21 SpawnSpotFacingForced 3 bool

22 CheckActorProperty 3 bool

23 SetActorVelocity 6 void

24 SetUserVariable 3 int

25 GetUserVariable 2 int

26 Radius_Quake2 6 void

27 CheckActorClass 2 bool

28 SetUserArray 4 int

29 GetUserArray 3 int

30 SoundSequenceOnActor 2 void

31 SoundSequenceOnSector 3 void

32 SoundSequenceOnPolyobj 2 void

	Introduction
	Introduction to the Manual
	Introduction to ACS and ACS++

	Byte Code
	Data Types and Other Numbers
	Script Types
	Script Flags
	Magic Limits

	Variable Scope and Arrays
	Detecting Byte Code Format
	ACS0 Script Directory And Byte Code
	ZDoom Enhanced Formats
	ARAY, AINI, and AIMP Chunks
	ASTR and MSTR Chunks
	LOAD Chunk
	FUNC and FNAM Chunks
	MEXP, MINI, and MIMP Chunks
	SPTR, SFLG, and SVCT Chunks
	STRL and STRE Chunks

	Appendix A: Script Optimizations
	Solving Runaway Scripts
	Avoid Providing Optional Arguments
	Use “const:” Where Possible

	Appendix B: PCode Reference
	PCode Table
	Additional Functions

