ACC++ Manual

Everything you could ever want to
know about ACS

BitOw/

Table of Contents

INEEOAUCTION. ...ttt ettt ettt et et esat e e st e e ettt e e sbeeeenaeee I
Introduction to the Manual..............coouiiiiiiiiiiiie e ettt e II
Introduction t0 ACS and ACSH . ..ooeieeieeeeeee ettt e II

BYEE COAE....cniiitiiieeeee ettt ettt et s a et st b e ettt 1
Data Types and Other NUMDETS..........ccciiriiiiieiieeieeie ettt ettt e ste et eeeaeeesssaeeeessaeeenes 2

SCTIPE TYPCS ettt et b ettt sbt et ea e s bt et sae e et e e baeenaeees 2
SCIIPE FLAZS. ... citiiiieeiieiieee ettt ettt ettt e et e et e et e esbeessbeensaessseenseessseenseennsseeennns 3
IMAGIC LIMIES. ..ottt ettt et et e et esae e st e e bt e e snbeeeenbeeesnbeeeenes 3
Variable SCOPE ANA ATTAYS.....cccuiirieiiieriieeiteetie et ertee et esteeeaeeseestbeesseessseesaessseessaeesssseeesssseenns 3
Detecting Byte Code FOIMaL.........cocooviiiiiiiiniiiiiieieeeece ettt 4
ACSO0 Script Directory And Byte Code........cooouviiiiiiiiiiiiieeiiieciie et e eveee e 4
ZDoom Enhanced FOrmMAtS.ooiiiiiiiiiiiieiieeeee ettt ettt et 5
ARAY, AINIL and AIMP CRUNKS.......ccoooueiiiieieeeeeeeeeeeeeee ettt e e e e e e eeeesaaeaaaaaaes 5
ASTR and MSTR CRUNKS........cooiuiiiiiiiiiie ettt ettt ettt e tee e e e e as 5
LOAD CRUNK. ...ttt sttt et ettt et e st e e snteesneeeenee 6
FUNC and FINAM CRUNKS.c..coiitiiiiieiieieee ettt ettt ettt st et s a e s 6
MEXP, MINL and MIMP CRUDKS.cuuviiiiiiiiieeeeeeeee et eee et e e e e e e seeeeaaeeeeaaaaes 6
SPTR, SFLG, and SVCT ChUNKS.........ccooiiiiiiiiieceeieee et 7
STRL and STRE CRUNKS.......cociiiiiiiiiiiei e 8

Appendix A: Script OPtIMIZAtIONS.c..eeviruieriiriiriteteeie sttt sttt st sbe e sbe et eatesaeeeaee 9

SOIVING RUNAWAY SCTIPLS...cutiieiiiieiiieeitie ettt ettt et e et e e taeeeaaeesaaeeesnnaaeeeeennnneeas 10
Avoid Providing Optional ATZUMENTS.coviruieriiriereiienieniteie ettt e e 10
Use “const:” Where POSSIDIC.ooiiiiiiiiiieieeeeeee e 10

Appendix B: PCode REfErencCe..........coeiiiiiiiiiiiiiiiiiciceteceetetce ettt 11

PCOAE TaDIE......conieiieeiee ettt ettt et b ettt et e et e st e enneeen 12

AQAITIONA] FUNCHONS. ettt e e e e e e e e e e e eeeeeeeeeeeaaeaaaaaeeaeeeeanaeeenannns 25

Introduction

II ACC++ Manual

Introduction to the Manual

This manual is going to be written as I design and write the ACC++ compiler. My hopes
are that the manual will describe anything and everything related to ACS. Although the ACC++
project is primarily focused around utilizing the features of ZDoom, included will be
documentation on the original byte code format as well as any other extensions that I may
stumble upon.

Seeing that I plan on writing this as I go, the beginning will focus mostly on the byte code
of ACS. From there I will describe the features of the ACS and ACS++ languages along with
any differences from the implementation of ACC. I will not describe the functionality of each
individual action special as they are all processed by the Ispec instructions. A good reference for
the functionality of these action specials would be the ZDoom wiki.! Although I will briefly
cover the byte code for each built in instruction I will still expect some external reference for
specific details.”

Introduction to ACS and ACS++

ACS is a scripting language that was designed by Raven Software for use within Hexen.
ACS provides a form of C style scripting which vastly expands the capabilities of the Doom
engine. The source to the compiler, ACC, has been released by Raven software under a
restrictive license. This code base has been used to create the compiler used by ZDoom. ZDoom
uses a greatly expanded version of ACS which can be described as the de facto implementation
due to its popularity.

Some of ZDoom's extensions, namely arrays, provided the base for which ACS++ can
operate on. Specifically global arrays have no definite bounds, which is a property that will be
used by ACC++ to allow a form of pointers, and by extension OOP to be possible. Other
features implemented by ZDoom will also play a major role within ACS++, such as functions
and libraries.

The ACC+H+ project was started on June 3™, 2010 after much anticipation from the Doom
community (although planning was started as far back as February of 2010). It is licensed under
the 3-clause BSD license in hopes that it can be used in various Doom projects, such as within
ZDoom itself. ACC++ is a drop in replacement for ACC and will be backwards compatible with
existing implementations of the ACS virtual machine, although certain ZDoom extensions will
be needed in order to use the ACS++ language.

As a replacement for ACC, ACC++ does not plan on extending the byte code format
where possible, and will not specifically allow anything new to be created. Although the
availability of object oriented concepts should make some things that would be otherwise
difficult to manage a bit easier. In addition ACC++ will not provide complete compatibility with
ACS (think C++ vs. C), but should allow existing code to compile with some minor changes.

1 Action special reference can be found at the following location: http://zdoom.org/wiki/Action_specials
2 Reference for the “built in” functions can also be found on the ZDoom wiki: http://zdoom.org/wiki/Built-
in_ACS_functions

http://zdoom.org/wiki/Action_specials
http://zdoom.org/wiki/Built-in_ACS_functions
http://zdoom.org/wiki/Built-in_ACS_functions

Byte Code

2 ACC++ Manual

Data Types and Other Numbers

Before reaching into the detailed specification for the ACS byte code format, we will
define our data types. Excepting for strings, all data types will be stored in little endian byte
order (least significant first). Strings will be stored as they are seen ending in a "\0' byte unless
otherwise noted.

For the purposes of this textbook signed values should be assumed unless otherwise
noted. The data type int will be used to represent a 32-bit integer, short for 16-bit, and char for
8-bit (with a string being an array of chars). The floating point type float will be 32-bit and
double for 64-bit.

Script Types

In order to handle various events on the map scripts are given one of the following types.
These will be referred to as ScriptType within this document.

0. CLOSED A normal script with no special trigger.

1. OPEN Script that is executed at the start of a game (world). It must be called
only once per map, UNLOADING can be used for returns.

2. RESPAWN Script that is executed by the player on respawn.

3. DEATH Script that is executed by the player when they are killed.

4. ENTER Script that is executed by the player when they enter the game. If

spectating is supported then this should only be when the player
enters the game physically. Should only be executed once per player.

PICKUP® Executes whenever a flag (for any team) is picked up in CTF.
BLUERETURN" Executed when the blue team's flag is returned in CTF.
REDRETURN" Executed when the red team's flag is returned in CTF.
WHITERETURN" Executed with the white flag is returned in one flag CTF.

o =N W

Types 9 through 11 are undefined.
12. LIGHTNING Executes whenever lightning strikes on the map.

13. UNLOADING Executed by the world before the level is finished. It should be
executed until the first delay, at which point execution may continue
only if the level is returned to.

14. DISCONNECT Should take one argument, which will be filled with the player
number of the disconnecting player. Note that in ports that allow
spectating this should also happen if the player turns into a spectator.

15. RETURN Like ENTER, but executed when the player returns to the map.

* These were defined for Skulltag's capture the flag game modes. They can be considered deprecated.

Byte Code 3

Script Flags

In addition to the script type a script may have flags associated which change how the
script is executed. Within this document these will be referred to as ScriptFlags.

1. NET Allows the player to “puke” the script. (That is execute from the
console or by button press.)’

2. CLIENTSIDE Causes the script to be executed by the client in a client server model.
This implies that the server does not need to be informed of any
changes to the script. Also, any script not carrying this flag is
assumed to be server side only.

Magic Limits

Since ZDoom has changed many of the hard limits I feel it's worth documenting these
changes. Here is a table of some of the magic numbers with their old and new values.

Limitation Hexen ZDoom
Scripts 64 1000
Map Variables 32 128
Script Variables 10 20*
World Variables 64 256
Strings 128 32768
Global Variables N/A 64
Functions N/A 256
Translations N/A 32

Variable Scope and Arrays

Due to the various references to scope throughout the byte code documentation it is worth
taking some time here to note what each scope means. In general there are 4 scopes in ACS,
local, map, world, and global. The last one, global, is an addition by ZDoom, but will be an
important role in ACS++.

The local scope is simply all of the variables within a script or function. These are
automatically assigned indexes by the compiler. Each script or function should have it's own
local scope.

The map scope are those global to a particular behavior lump. It may also include
variables pulled in from a library. These, like those in the local scope, are also automatically
assigned their indexes. One major difference between map variables and local variables is that
map variables can be an array. Exclusive to the map scope arrays is the ability to be initialized

3 At one point in time this flag also implied CLIENTSIDE in Skulltag, however due to incompatibility issues this

has been changed to only mean “can be puked.”
4 Can be increased with SVCT chunks.

4 ACC++ Manual

during their definition.

The world scope contains variables that are carried over through an entire hub. When not
in a hub they are functionally identical to map variables. However due to the ability to be carried
over maps they must be manually assigned their index and can not be initialized during defintion.

The last scope, introduced by ZDoom, is global. These variables are carried during game
play to all maps until a new game starts. These are useful for tracking stats between levels and
will be the basis for the memory heap in ACS++. Otherwise they are very similar to world
variables.

Some things to note about world and global arrays. First is that they do not share their
indexes with world and global variables. ZDoom defines a limit of 256 world variables and
arrays, and 64 global variables and arrays. The second important feature is that they world and
global arrays have no defined size. An ACS++ conforming VM must have the ability to
dynamically resize these arrays.

Detecting Byte Code Format

As of this writing there are three known byte code formats. The first we'll be covering is
the Hexen byte code format, henceforth known as ACS0, which can be identified by the 4-byte
header of “ACS\0”. ZDoom introduces two enhanced byte code formats. The first being ACSE,
and the latter being ACSe.

Although not required, ZDoom's ACC generally generates an empty ACSO script at the
beginning of the file and thus the detection of the format is not entirely straightforward.

Type Name Description
char[4] Identifier May be “ACS\0”, “ACSE”, or “ACSe”
int DirOffset

If the Identifier is ACSE or ACSe our work is done, otherwise we need to check the
char[4] at the DirOffset-4. If this is ACSE or ACSe then we need to switch to the respective
format. In that case we will need to get our new DirOffset from DirOffset-8.

ACSO Script Directory And Byte Code

At DirOffset the first int represents the number of scripts within the lump. The number of
scripts is followed by that many pointers. These pointers are in the following format.

Type Name Description
int Number The actual number is this int mod 1000. This number divided by 1000 will
represent the ScriptType.
int Address Position in which the script starts.
int ArgCount The number of arguments the script takes. Due to limitations this should be no

larger than 3.

Byte Code 5

After the script pointers is an int for the number of strings in the strings table. This will
be followed by the same amount of ints referencing the position within the lump at which the
string starts. All strings are standard NULL terminated char arrays.

An ACSO script is relatively straightforward. It consists of an int for the pcode followed
by additional ints for any parameters the pcode may take. This is repeated until
PCD _TERMINATE is reached. See appendix B for a list of pcodes and their functions.

ZDoom Enhanced Formats

ZDoom offers two enhanced byte code formats. Both ACSE and the newer ACSe are
chunk based. As such the DirOffset from the header now indicates the offset to the start of the
chunk data rather than an actual directory. Below is the format of the chunk header.

Type Name Description

char[4] Identifier

int Size

None of the chunks are required, however some of the chunks can be assumed that there
are only one instance of them. In this documentation you may assume that you should only find
one of each chunk unless otherwise specified.

ARAY, AINI, and AIMP Chunks

The ARAY chunk holds information about the map arrays defined in the script. The
number of arrays can be found by dividing the chunk size by 8. The format for each array is an
int for the array's number followed by an int for the size of the array.

An AINI chunk initializes one of the arrays defined in the ARAY chunk. There can be as
many of these chunks as there are map arrays defined in the ARAY chunk. The format is an int
followed by one int for each element in the array as defined in ARAY.

The AIMP chunk is used to list information on the arrays that have been imported from a
library. It first has an int¢ for the number of arrays that have been imported which will be
followed by one of the following structures for each array.

Type Name Description
int Number
int Size Expected size.
charf[] Name Null terminated string.

ASTR and MSTR Chunks

These chunks are used in libraries to notify of variables and arrays that hold string values.
They will have to be tagged at run time with an identifier. This identifier is stored in the upper

6 ACC++ Manual

16-bits of the string's index just as the tagstring instruction does.

The MSTR chunk is for map variables. The number of variables referenced can be found
by dividing the chunk size by 4 and will be followed by that many ints referencing the map
variables by their index.

The ASTR chunk does the same for map arrays. Same format is MSTR except the
variable index refers to an array. Note that you will have to flag all the strings in the array based
on the size found in the AIMP chunk.

LOAD Chunk

This chunk provides the name of a library in which to load. The chunk is simply a list of
null terminated string with the library name. As of this writing these should not be more than 8
characters. The only way to determine how many names there are is by checking to see if the
chunk size has been reached.

FUNC and FNAM Chunks

The FUNC chunk holds information about the various functions that are in the script.
The number of functions can be determined by dividing the chunk size by 8. For each function
the following structure is used.

Type Name Description
char NumArgs
char NumVars
char HasReturn Actually a boolean.
char Always 0.
int Address Lump offset to the start of the function's code.

The FNAM chunk is a string table which indexes the names of each function in the lump.
For information on the formatting of the string tables see the STRL and STRE chunks
documentation.

MEXP, MINI, and MIMP Chunks

The MINI and MIMP chunks are similar to the array counterparts AINI and AIMP. An
MINI chunk initializes the map variables. The format is an inf for the number of map variables
initialized followed by one int for each variable's value.

The MIMP chunk is used to list information on the map variables that have been imported
from a library. This chunk is just a list of the following structures, so you will need to check
against the chunk size to determine the number of variables imported.

Byte Code 7

Type Name Description
int Number
char[] Name Null terminated string.

The MEXP chunk is used in the lump for a library to store string table with the names of
the map variables. See the STRL and STRE chunks for more details.

SPTR, SFLG, and SVCT Chunks

The SFLG chunk is an additional chunk used to define the ScriptFlags for a particular
script. The number of scripts referenced can be found by dividing the chunk size by 4. It will be
followed by that many of the following structures.

Type Name Description
short ScriptNumber
short ScriptFlags See ScriptFlags reference in Data Types and Other Numbers.

The SVCT flag changes the limit on the number of local variables a script can use (the
default limit is 20). The format of this chunk is the same as SFLG except the ScriptFlags would
represent the number of local variables available.

The SPTR chunk is the replacement for the script directory. It also is what makes the
difference between the ACSe and ACSE formats. For the sake of chronological order, I'll be
documenting the ACSe version first.

For ACSe the number of scripts defined by the SPTR chunk is the chunk size divided by
12. It will be followed by that many of the following structure.

Type Name Description
short ScriptNumber
short ScriptType See ScriptType reference in Data Types and Other Numbers.
int Address Relative to the entire lump.
int ArgCount

For ACSE the number of script is defined by the size of the chunk divided by 8. The
structures will be in the following format.

Type Name Description
short ScriptNumber
char ScriptType See ScriptType reference in Data Types and Other Numbers.
char ArgCount
int Address Relative to the entire lump.

8 ACC++ Manual

STRL and STRE Chunks

These are the string table chunks. STRL is a normal string table and STRE is an
encrypted string table (encryption is enabled through ACC's #encryptstrings option). The format
of the standard string tables are an inf that is wasted, an int for the number of strings in the table,
followed by another wasted inz. This will be followed by an int for each string in the table which
represents the offset to that string in the chunk (note that these will also be part of the keys
during encryption).

The encryption uses a fairly simple algorithm in which encryption and unencryption is
done through the same process. The encryption key is the offset in the chunk to the string

multiplied by 157,135. With the key, loop through each character taking the exclusive or of the
character with the key+x where x is the character number divided by two.

A note about other string table chunks (FNAM, and MEXP), their format does differ
slightly in that the two wasted ints do not exist.

Appendix A: Script Optimizations

10 ACC++ Manual

Solving Runaway Scripts

At least in ZDoom, an instruction limit is imposed for every tic. This limit is 500,000
instructions. In general you should not reach this limit, however if you do here are a few tips on
how to avoid it. Keep in mind that most of the time when this limit is reached it is because of
loops or recursive functions. Therefor even if it may seem like these techniques only save an
instruction or two you might end up saving more than you think.

Avoid Providing Optional Arguments

Whenever possible you should avoid providing the optional arguments. Unless you are
using a constant expression, each argument produces at least one push instruction which counts
towards your limit. For example, if you use the ACS Execute function and you don't need to
pass in any arguments only provide the fist two. See the following code:

#include “zcommon.acs”

script 1 (void)

{
// This call will use 5 push instructions followed by an lspec5.
ACS Execute(2, 0, 0, 0, 0);

// This functionally identical call will use 2 push instructions and lspec2.
ACS Execute(2, 0);

Use “const:” Where Possible

Probably the simplest thing to do provided none of your arguments are expressions.
Simply place “const:” before the first argument on your action special calls and avoid using push
instructions completely. Observe the following:

#include “zcommon.acs”
script 1 (void)
{

// 6 instructions
ACS Execute(2, 0, 0, 0, 0);

// 1 instruction
ACS Execute (const:2, 0, 0, 0, 0);

In addition to all line specials, you can use const on any of the following functions:
Delay, Random, ThingCount, TagWait, PolyWait, ChangeFloor, ChangeCeiling, ScriptWait,
SetGravity, SetAirControl, Givelnventory, Takelnventory, CheckInventory, Spawn, SpawnSpot,
SetMusic, LocalSetMusic, and SetFont.

This can not be combined with leaving out optional arguments for the purposes of saving
“cycles,” however you may do so in order to save space on the compiled byte code.

Appendix B: PCode Reference

12 ACC++ Manual

PCode Table

In all there are 352 defined PCodes. The extension column states what engine introduced
the PCode. Required indicates if it is needed for ACS++. In addition all Hexen PCodes are
listed as required. “St. Of.” (stack offset) indicates the expected shift in stack size. The codes
highlighted in gray are named however are not, and to my knowledge never have been, defined
programmatically.

For most functions I'll just say “See FunctionName(<num parameters>[, <max
parameters>]).” The number of parameters is a constant in the byte code, so the number of
optional parameters is merely provided here for reference purposes. To learn more about these
functions I recommend checking out the page on the ZDoom wiki. (http://zdoom.org/wiki/Built-
in_ACS_functions)

It is important to note that for function calls in ACS, the first item pushed onto the stack
is the first argument, the next would be the second argument and so forth. Likewise when
performing operations the first item pushed onto the stack is the operand to the left of the
operator and the second item would be the right operand. That said when I describe which stack

item to use for what I will be using “1°” to mean the top of the stack and not the first item
pushed.

PCode Args St.Of. Ext Req Description

0 |nop 0 0 Hexen | X |Does nothing

1 |terminate 0 0 Hexen | X |Finishes the current script.

2 sspe 0| 0| e | x Mlldthe o o et il s xcued

3 | pushnumber 1 1 Hexen | X |Pushes an int onto the stack.

4 |lspect 1 1 | Hexen | X Ezf;:tglees stge; 1l(i.ne special using removing one argument

5 |lspec2 1 -2 | Hexen | X |Same as Ispecl only uses 2 args from the stack.

6 |Ispec3 1 -3 | Hexen | X |Same as Ispecl only uses 3 args from the stack.

7 |lspec4 1 -4 | Hexen | X |Same as Ispecl only uses 4 args from the stack.

8 |lspec5 1 -5 | Hexen | X |Same as Ispecl only uses 5 args from the stack.

9 |Ispecidirect) 0 Hexen | X E;(g;l;is ;::agr;e;esrPecial in the first arg with one

10 |Ispec2direct 3 0 | Hexen | X |Same as Ispecldirect only with 2 arguments.

11 |1spec3direct 4 0 Hexen | X |Same as Ispecldirect only with 3 arguments.

12 | Ispec4direct 5 0 Hexen | X |Same as Ispecldirect only with 4 arguments.

13 |IspecSdirect 6 0 Hexen | X |Same as Ispecldirect only with 5 arguments.

14 | add 0 1 | Hexen | x icslglst 'the last two items from the stack, pushing the

http://zdoom.org/wiki/Built-in_ACS_functions
http://zdoom.org/wiki/Built-in_ACS_functions

Appendix B: PCode Reference 13
PCode Args St.Of. Ext Req Description
15 | subtract 0 1 | Hexen | X Subtracts the last two items from the stack pushing the
result.
16 | multiply 0 1 Hexen | X Multiplies the last two items from the stack pushing
the result.
17 | divide 0 1 | Hexen | X Divides the last twg 1.te.ms from the stack pushing the
result. Errors on division by zero.
Calculates the remainder of division of the last two
18 | modulus 0 -1 | Hexen | X |items on the stack, pushing the result. Errors on
modulus by zero.
19 |eq 0 1 Hexen | X Pushes 1 to the sta(.:k if the last two items are
equivalent, otherwise pushes 0.
20 | ne 0 1 | Hexen | X Pushes 1 to the sta(.:k if the last two items are not
equivalent, otherwise pushes 0.
Pushes 1 to the stack if the 2™ item in the stack is less
21 It 0 | -1 | Hexen | X | on the 1, otherwise pushes 0.
Pushes 1 to the stack if the 2™ item in the stack is
22 gt 0| -1 | Hexen | X greater than the 1%, otherwise pushes 0.
. d . .
23 |1e 0 1 | Hexen | X Pushes 1 to the ssfack if thfa 2" item in the stack is less
or equal to the 1*, otherwise pushes 0.
Pushes 1 to the stack if the 2™ item in the stack is
24 Jge 0 -1 | Hexen | X greater than or equal to 1%, otherwise pushes 0.
25 | assignscriptvar 1 1 | Hexen | X Asglgns the value on the stack to the specified local
variable.
26 | assignmapvar 1 1 | Hexen | X Asglgns the value on the stack to the specified map
variable.
27 | assignworldvar 1 1 | Hexen | X Ass.lgns the value on the stack to the specified world
variable.
28 |pushscriptvar 1 1 Hexen | X |Pushes the value of the local variable onto the stack.
29 | pushmapvar 1 1 Hexen | X |Pushes the value of the map variable onto the stack.
30 | pushworldvar 1 1 Hexen | X |Pushes the value of the world variable onto the stack.
31 | addscriptvar 1 -1 | Hexen | X |Adds the stack to the specified local variable.
32 |addmapvar 1 -1 | Hexen | X |Adds the stack to the specified map variable.
33 |addworldvar 1 -1 | Hexen | X |Adds the stack to the specified world variable.
34 |subscriptvar 1 -1 | Hexen | X |Subtracts the stack from the specified local variable.
35 | submapvar 1 -1 | Hexen | X |Subtracts the stack from the specified map variable.
36 |subworldvar 1 -1 | Hexen | X |Subtracts the stack from the specified world variable.
37 | mulscriptvar 1 -1 | Hexen | X |Multiplies the stack to the specified local variable.
38 | mulmapvar 1 -1 Hexen | X |Multiplies the stack to the specified map variable.
39 | mulworldvar 1 -1 | Hexen | X |Multiplies the stack to the specified world variable.

14 ACC++ Manual

PCode Args St.Of. Ext Req Description

40 | divscriptvar 1 1 | Hexen | X Divides the. s‘Faf:k from the specified local variable.
Errors on division by zero.

41 | divmapvar 1 1 Hexen | X Divides the‘ sFapk from the specified map variable.
Errors on division by zero.

42 | divworldvar 1 1 | Hexen | X Divides the. s‘Fafzk from the specified world variable.
Errors on division by zero.

43 | modscriptvar 1 -1 | Hexen | X |Takes modulus of the local variable by the stack.

44 | modmapvar 1 -1 Hexen | X |Takes modulus of the map variable by the stack.

45 | modworldvar 1 -1 | Hexen | X |Takes modulus of the world variable by the stack.

46 |incscriptvar 1 0 Hexen | X |Increments the local variable by one.

47 | incmapvar 1 0 Hexen | X |Increments the map variable by one.

48 | incworldvar 1 0 Hexen | X |Increments the world variable by one.

49 | decscriptvar 1 0 Hexen | X |Decrements the local variable by one.

50 |decmapvar 1 0 Hexen | X |Decrements the map variable by one.

51 |decworldvar 1 0 | Hexen | X |Decrements the world variable by one.

52 |goto 1 0 Hexen | X |Sets the script execution to the offset specified.

53 |ifgoto 1 1 | Hexen | X Same ‘as goto except it first checks to see if the stack
doesn't equal zero.

54 | drop 0 -1 Hexen | X |Removes one value from the stack.’
Causes the script to wait for the number of tics

55 | delay 0 -1 Hexen | X specified on the stack. See also Delay(2).

56 |delaydirect 1 0 Hexen | X |Same as delay only with constant parameters.
Picks a random number inclusively between the last

57 |random 0 -1 | Hexen | X two items on the stack. See also Random(2).

58 |randomdirect 2 1 Hexen | X |Same as random only uses constant parameters.

59 |thingcount 0 -1 | Hexen | X |See ThingCount(2)

60 | thingcountdirect 2 1 Hexen | X |Same as thingcount, uses constant parameters.

. Waits for the tag in the stack to finish moving. See
61 |tagwait 0 -1 Hexen | X also TagWait(1).
62 |tagwaitdirect 1 0 Hexen | X |Same as tagwait, uses constant parameters.
. Waits for the polyobj number in the stack to finish

63 | polywait 0 | -1 | Hexen | X moving. See PolyWait(1).

64 | polywaitdirect 1 0 Hexen | X |Same as polywait, uses constant parameters.

65 |changefloor 0 -2 | Hexen | X |See ChangeFloor(2).

66 |changefloordirect 2 0 Hexen | X |Same as changefloor, uses constant parameters.

67 | changeceiling 0 -2 | Hexen | X |See ChangeCeiling(2).

5 In ZDoom this is handled identically to the PCode setresultvalue.

Appendix B: PCode Reference 15

PCode Args St.Of. Ext Req Description

68 | changeceilingdirect 2 0 Hexen | X |Same as changeceiling, uses constant parameters.

69 | restart 0 0 Hexen | X Sets the S'Cl‘lpt execution offset back to the beginning
of the script.

70 | andlogical 0 1 Hexen | X Pushes'l if the last two items on the stack are true,
otherwise pushes 0.

71 | orlogical 0 1 | Hexen | X Pushes 1 if e?lther of the last two items on the stack are
true, otherwise pushes 0.

72 | andbitwise 0 1 Hexen | X Performs a b1tw1se; and operation on the last two items
on the stack, pushing the result.

73 | orbitwise 0 1 | Hexen | X Performs a b1tw1se? or optionation on the last two items
on the stack, pushing the result.

74 | corbitwise 0 1 | Hexen | X Perf(?rms a bitwise excluswg or optionation on the last
two items on the stack, pushing the result.

75 | negatelogical 0 0 | Hexen | X Syvltches the last item on the stack from true to false or
vice versa.

76 | Ishift 0 1 | Hexen | x Performs a left.shlft operation on the last two items on
the stack, pushing the result.

77 | rshift 0 1 | Hexen | X Performs a right sh1ft operation on the last two items
on the stack, pushing the result.

78 | unaryminus 0 0 Hexen | X Changes the l.ast item on the stack from positive to
negative or vice versa.

79 | ifnotgoto 1 1 | Hexen | X Sets the Sf:rlpt execution to the offset specified only if
the stack is not true.

80 | lineside 0 1 Hexen | X |See LineSize(0).

81 |scriptwait 0 -1 | Hexen | X |See ScriptWait(1).

82 | scriptwaitdirect 1 0 Hexen | X |Same as scriptwait, uses constant parameters.

83 |clearlinespecial 0 0 Hexen | X |See ClearLineSpecial(0).

. nd . .

84 | casegoto > 1 Hexen | X Sets the execgtlon to the 2™ parameter if the stack is
equal to the 1°.

85 | beginprint 0 0 Hexen | X Startg collecting information for the print or printbold
functions.

86 | endprint 0 0 | Hexen | X |Finishes a print() call.

87 | printstring 0 -1 | Hexen | X |Adds the string referenced by the stack to the print.

88 | printnumber 0 -1 | Hexen | X |Adds the number referenced by the stack to the print.

89 | printcharacter 0 -1 | Hexen | X |Adds the character referenced by the stack to the print.

90 | playercount 0 1 Hexen | X |See PlayerCount(0).

91 | gametype 0 1 Hexen | X |See GameType(0).

92 | gameskill 0 1 Hexen | X |See GameSkill(0).

93 |timer 0 1 Hexen | X |See Timer(0).

16 ACC++ Manual

PCode Args St.Of. Ext Req Description

94 | sectorsound 0 -2 | Hexen | X |See SectorSound(2).

95 |ambientsound 0 -2 | Hexen | X |See AmbientSound(2).

96 |soundsequence 0 -1 | Hexen | X |See SoundSequence(1).

97 |setlinetexture 0 -4 | Hexen | X |See SetLineTexture(4).

98 | setlineblocking 0 -2 | Hexen | X |See SetLineBlocking(2).®

99 | setlinespecial 0 -7 | Hexen | X |See SetLineSpecial(2,7).

100 | thingsound 0 -3 | Hexen | X |See ThingSound(3).

101 | endprintbold 0 0 Hexen | X 221:‘}]1:%[l‘illlser‘r‘ll;i;l; EE)‘rint statement. All players should

102 | activatorsound 0 -2 | ZDoom See ActivatorSound(2).

103 | localambientsound 0 -2 | ZDoom See LocalAmbientSound(2).

104 | setlinemonsterblocking 0 -2 | ZDoom See SetLineMonsterBlocking(2).

119 | playerteam 0 1 | Skulltag See PlayerTeam(0).
120 | playerhealth 0 1 | Skulltag See PlayerHealth(0).
121 | playerarmorpoints 0 1 | Skulltag See PlayerArmorPoints(0).
122 | playerfrags 0 1 | Skulltag See PlayerFrags(0).
2 |playerespert || |Skullag| | Completely undefined at thisime.
124 | blueteamcount 0 1 | Skulltag See BlueCount(0).
125 | redteamcount 0 1 | Skulltag See RedCount(0).

6 In Hexen it may be assumed that the second argument to this function is a boolean, however other ports have
extended this to include multiple flags.

Appendix B: PCode Reference 17
PCode Args St.Of. Ext Req Description
126 | blueteamscore 0 1 | Skulltag See BlueScore(0).
127 | redteamscore 0 1 | Skulltag See RedScore(0).
128 | isoneflagetf 0 1 | Skulltag See IsOneFlagCTF(0).
129 | getinvasionwave 0 1 | Skulltag See GetlnvasionWave(0).
130 | getinvasionstate 0 1 | Skulltag See GetlnvasionState(0).
131 printaame 0 skiag | o e curentprnt
132 | musicchange 0 -2 | Skulltag See Music_Change(2).
133 | consolecommanddirect 3 0 | Skulltag E}?E?ﬁ;:g;giig zgums?ind and executes it.” Last
134 | consolecommand 0 3| Skulltag tsh?;;ii 'consolecommanddirect, except it reads from
135 | singleplayer 0 1 | Skulltag g;llfehrixsfi;etgfslﬁesst%?k if playing in single player
136 | fixedmul 0 1 | ZDoom | X ls\:l;cll‘iﬂ;ﬁzsptilsehleassi l:zv;)efli(lcta‘d point numbers on the
137 | fixeddiv 0 1 | ZDoom | X zli(\lli;i: }fgsetl}?strg:;)]tt.ixed point numbers on the stack
138 | setgravity 0 -1 | ZDoom See SetGravity(1).
139 | setgravitydirect 1 0 | ZDoom Same as setgravity, uses constant parameters.
140 | setaircontrol 0 -1 | ZDoom See SetAirControl(1).
141 | setaircontroldirect 1 0 | ZDoom Same as setaircontrol, uses constant parameters.
142 | clearinventory 0 0 | ZDoom See ClearInventory(0).
143 | giveinventory 0 -2 | ZDoom See Givelnventory(2).
144 | giveinventorydirect 2 0 | ZDoom Same as giveinventory, uses constant parameters.
145 | takeinventory 0 -2 | ZDoom See Takelnventory(2).
146 | takeinventorydirect 2 0 | ZDoom Same as takeinventory, uses constant parameters.
147 | checkinventory 0 0 | ZDoom See CheckInventory(1).
148 | checkinventorydirect 1 0 | ZDoom Same as checkinventory, uses constant parameters.
149 | spawn 0 -5 | ZDoom See Spawn(4,6). Pushes 1 on success 0 on failure.
150 | spawndirect 6 0 | ZDoom Same as spawn, uses constant parameters.
151 | spawnspot 0 -3 | ZDoom See SpawnSpot(2,4). Pushes 1 on success 0 on failure.
152 | spawnspotdirect 4 0 | ZDoom Same as spawnspot, uses constant parameters.
153 | setmusic 0 -3 | ZDoom See SetMusic(1,3).
154 | setmusicdirect 3 0 | ZDoom Same as setmusic, uses constant parameters.

7 It is worth noting here that consolecommand can be a serious security issue. As such I would advise against
implementing it.

18 ACC++ Manual
PCode Args St.Of. Ext Req Description
155 | localsetmusic 0 -3 | ZDoom See LocalSetMusic(1,3).
156 | localsetmusicdirect 3 0 | ZDoom Same as localsetmusic, uses constant parameters.
157 | printfixed 0 -1 | ZDoom Adds the fixed point number on the stack to the print.
158 | printlocalized 0 1 | ZDoom A(_ids the localized string referenced by the stack to the
print command.
159 | morehudmessage 0 0 | ZDoom Effecnvely.ends the print portion of hudmessage. It
does not print the message.
Sets the position of hudmessage arguments in the stack
to the current stack pointer. Finishing the parameter
160 | opthudmessage 0 0 | ZDoom section of hudmessage. See hudmessage on the
ZDoom wiki for detailed information on the
parameters.
Finishes an hudmessage command. Removing all
161 | endhudmessage 0 x | ZDoom parameters (terminated by opthudmessage) from the
stack.
162 | endhudmessagebold 0 « | ZDoom silr;l:resls endhudmessage only prints the message to all

165 | setfont 0 -1 | ZDoom See SetFont(1).

166 | setfontdirect 1 0 | ZDoom Same as setfont, uses constant parameters.

167 | pushbyte 1 0 | ZDoom Pushes a char onto the stack.

168 | Ispecldirectb 2 0 | ZDoom Same as Ispecldirect except all parameters are chars.
169 | Ispec2directb 3 0 | ZDoom Same as Ispec2direct except all parameters are chars.
170 | Ispec3directb 4 0 | ZDoom Same as Ispec3direct except all parameters are chars.
171 | Ispec4directb 5 0 | ZDoom Same as Ispecddirect except all parameters are chars.
172 | IspecSdirectb 6 0 | ZDoom Same as Ispec5direct except all parameters are chars.
173 | delaydirectb 1 0 | ZDoom Same as delaydirect except it takes a char.

174 | randomdirectb 2 0 | ZDoom Same as randomdirect except all parameters are chars.
175 | pushbytes n+l | n | ZDoom Pushes n chars to the stack where 7 is the first char.
176 | push2bytes 2 2 | ZDoom Pushes 2 chars to the stack.

177 | push3bytes 3 3 | ZDoom Pushes 3 chars to the stack.

178 | push4bytes 4 4 | ZDoom Pushes 4 chars to the stack.

179 | pushSbytes 5 5 | ZDoom Pushes 5 chars to the stack.

180 | setthingspecial 0 -7 | ZDoom See SetThingSpecial(2,7).

181 | assignglobalvar 1 1 | 7Doom | x éasrsllgiz .the value on the stack to the specified global

Appendix B: PCode Reference 19
PCode Args St.Of. Ext Req Description

182 | pushglobalvar 1 | | ZDoom | X Pushes the value of the specified global variable onto
the stack.

183 | addglobalvar 1 -1 | ZDoom | X |Adds the value of the stack to the specified global var.

184 subglobalvar 1 1 | ZDoom | X Substracts. the value of the stack from the specified
global variable.

185 | mulglobalvar 1 -1 | ZDoom | X |Multiplies the global variable by the value on the stack.

186 | divglobalvar 1 1 | ZDoom | X Divides the. g'lovbal variable by the value on the stack.
Errors on division by zero.

187 | modglobalvar 1 1 | ZDoom | X Does the modulus of the global variable with the value
on the stack. Errors on modulus by zero.

188 | incglobalvar 1 0 | ZDoom | X |Increments the global variable by one.

189 | decglobalvar 1 0 | ZDoom | X |Decrements the global variable by one.

190 | fadeto 0 -5 | ZDoom See FadeTo(5).

191 | faderange 0 -9 | ZDoom See FadeRange(9).

192 | cancelfade 0 0 | ZDoom See CancelFade(0).

193 | playmovie 0 0 | ZDoom See PlayMovie(1).

194 | setfloortrigger 0 -8 | ZDoom See SetFloorTrigger(3,8).

195 | setceilingtrigger 0 -8 | ZDoom See SetCeilingTrigger(3,8).

196 | getactorx 0 1 | ZDoom See GetActorX(1).

197 | getactory 0 1 | ZDoom See GetActorY(1).

198 | getactorz 0 1 | ZDoom See GetActorZ(1).

. Begins the translation definition for the translation
199 starttranslation 0 -1 | ZDoom specified on the stack. See CreateTranslation(2).
. Specifies a translation between palette indexes. Stack

200 translationrangel 0 -4 | ZDoom represents 1°:2"=3":4" See CreateTranslation(2).
Specifies a translation from palette indexes to RGB

201 | translationrange2 0 -8 | ZDoom values. Stack represents 1%:2™=[3" 4" 5"]:[6" 7™ 8],
See CreateTranslation(2).

202 | endtranslation 0 0 | ZDoom Finishes a call to CreateTranslation(2).

203 | call 1 1 | ZDoom | X |Calls the function specified by index.

. Same as call, except the value returned will not be

204 | calldiscard ! 0 | ZDoom | X pushed to the stack. (Alternatively dropped.)

205 | returnvoid 0 10 | ZDoom | X Returns from a function pushing 0 to the stack unless
called by calldiscard.

206 | returnval 0 10 | ZDoom | X Returns from a function kegpmg the top value of the
stack unless called by calldiscard.
Pushes the value of the specified map array at the

207/ pushmaparray ! 0 | ZDoom | X index referenced by the stack.

20 ACC++ Manual
PCode Args St.Of. Ext Req Description
. Assigns the value of 1 stack item to the specified map
208 assignmaparray ! -2 | ZDoom | X array at the index referenced by the 2™ item.
Adds the value of the 1* stack item to the specified
209 |addmaparray ! -2 | ZDoom | X map array at the index of the 2™ stack item.
Subtracts the value of the 1* stack item to the specified
210 | submaparray ! -2 | ZDoom | X map array at the index of the 2™ stack item.
Multiplies the specified map array's index referenced
211 mulmaparray 1| -2 | ZDoom | X by the 2 item on the stack by the 1°.
Divides the specified map array's index referenced by
212 | divmaparray 1 -2 | ZDoom | X |the 2™ item on the stack by the 1*. Errors on division
by zero.
Performs the modulus of the specified map array's
213 | modmaparray 1 -2 | ZDoom | X |index referenced by the 2™ item on the stack by the 1%
item on the stack. Errors on modulus by zero.
. Increments the specified map array at the index
214 incmaparray ! -1 | ZDoom | X referenced by the stack by one.
Decrements the specified map array at the index
215 | decmaparray ! -1 | ZDoom | X referenced by the stack by one.
216 | dup 0 1 | ZDoom Pushes the value of the stack to the stack.
217 | swap 0 0 | ZDoom Switches the last two values on the stack.

220 | sin 0 0 | ZDoom See Sin(1).

221 cos 0 0 | ZDoom See Cos(1).

222 | vectorangle 0 -1 | ZDoom See VectorAngle(2).

223 | checkweapon 0 0 | ZDoom See CheckWeapon(1).

224 | setweapon 0 0 | ZDoom See SetWeapon(1).

225 | tagstring 0 0 | ZDoom | X |Puts the id of the library into upper 16-bits of the stack.
Pushes the value of the specified world array at the

226 | pushworldarray ! 0 | ZDoom | X index referenced by the stack.

. Assigns the value of 1* stack item to the specified

227 |assignworldarray ! -2 | ZDoom | X world array at the index referenced by the 2™ item.
Adds the value of the 1* stack item to the specified

228 |addworldarray ! -2 | ZDoom | X world array at the index of the 2™ stack item.
Subtracts the value of the 1* stack item to the specified

229 | subworldarray ! -2 | ZDoom | X world array at the index of the 2™ stack item.
Multiplies the specified world array's index referenced

230 | mulworldarray I} -2 |ZDoom | X by the 2™ item on the stack by the 1°*.

Appendix B: PCode Reference 21
PCode Args St.Of. Ext Req Description

Divides the specified world array's index referenced by

231 | divworldarray 1 -2 | ZDoom | X |the 2™ item on the stack by the 1*. Errors on division
by zero.
Performs the modulus of the specified world array's

232 | modworldarray 1 -2 | ZDoom | X |index referenced by the 2™ item on the stack by the 1*
item on the stack. Errors on modulus by zero.

. Increments the specified world array at the index

233 | incworldarray ! -1 | ZDoom | X referenced by the stack by one.

234 | decworldarray 1 1 | ZDoom | X Decrements the specified world array at the index
referenced by the stack by one.
Pushes the value of the specified global array at the

235 | pushglobalarray ! 0 | ZDoom | X index referenced by the stack.

. Assigns the value of 1* stack item to the specified

236 |assignglobalarray ! -2 | ZDoom | X global array at the index referenced by the 2™ item.
Adds the value of the 1* stack item to the specified

237 addglobalarray ! -2 | ZDoom | X global array at the index of the 2™ stack item.
Subtracts the value of the 1* stack item to the specified

238 | subglobalarray ! -2 | ZDoom | X global array at the index of the 2™ stack item.
Multiplies the specified global array's index referenced

239 | mulglobalarray I} -2 |ZDoom | X by the 2™ item on the stack by the 1°*.
Divides the specified global array's index referenced

240 | divglobalarray 1 -2 | ZDoom | X |by the 2™ item on the stack by the 1. Errors on
division by zero.
Performs the modulus of the specified global array's

241 | modglobalarray 1 -2 | ZDoom | X |index referenced by the 2™ item on the stack by the 1*
item on the stack. Errors on modulus by zero.

. Increments the specified global array at the index

242 | incglobalarray ! -1 | ZDoom | X referenced by the stack by one.
Decrements the specified global array at the index

243 | decglobalarray ! -1 | ZDoom | X referenced by the stack by one.

244 | setmarineweapon 0 -2 | ZDoom See SetMarineWeapon(2).

245 | setactorproperty 0 -3 | ZDoom See SetActorProperty(3).

246 | getactorproperty 0 -1 | ZDoom See GetActorProperty(2).

247 | playernumber 0 1 | ZDoom See PlayerNumber(0).

248 | activatortid 0 1 | ZDoom See ActivatorTID(0).

249 | setmarinesprite 0 -2 | ZDoom See SetMarineSprite(2).

250 | getscreenwidth 0 1 | ZDoom See GetScreenWidth(0).

251 | getscreenheight 0 1 | ZDoom See GetScreenHeight(0).

252 | thingprojectile2 0 -7 | ZDoom See Thing Projectile2(7).

253 | strlen 0 0 | ZDoom | X |See StrLen(1).

22 ACC++ Manual
PCode Args St.Of. Ext Req Description

254 | sethudsize 0 -3 | ZDoom See SetHudSize(3).

255 | getcvar 0 0 | ZDoom See GetCVar(1).
First ensure that your script data pointer is 4 byte
aligned. The first short indicates the number of cases.

256 | casegotosorted n+l| -1 | ZDoom | X |The cases should be sorted in such a way that a binary
search may be performed. The case to jump to is the
one where the case matches the stack.

257 | setresultvalue 0 -1 | ZDoom | X |Sets the result of the script to the stack.

258 | getlinerowoffset 0 1 | ZDoom See GetLineRowOffset(0).

259 | getactorfloorz 0 0 | ZDoom See GetActorFloorZ(0).

260 | getactorangle 0 0 | ZDoom See GetActorAngle(0).

261 | getsectorfloorz 0 -2 | ZDoom See GetSectorFloorZ(3).

262 | getsectorceilingz 0 -2 | ZDoom See GetSectorCeilingZ(3).

263 | Ispecsresult 0 4 | ZDoom | X Same as Ispec5 except the result of the special is
pushed onto the stack.

264 | getsigilpieces 0 1 | ZDoom See GetSigilPieces(0).

265 | getlevelinfo 0 0 | ZDoom See GetLevellnfo(1).

266 | changesky 0 -2 | ZDoom See ChangeSky(2).

267 | playeringame 0 0 | ZDoom See PlayerInGame(1).

268 | playerisbot 0 0 | ZDoom See PlayerIsBot(1).

269 | setcameratotexture 0 -3 | ZDoom See SetCameraToTexture(3).

270 | endlog 0 0 | ZDoom Ends a log call.

271 | getammocapacity 0 0 | ZDoom See GetAmmoCapacity(1).

272 | setammocapacity 0 -2 | ZDoom See SetAmmoCapacity(2).
Adds the string represented by the character array in

273 | printmapchararray 0 -2 | ZDoom the map array specified by the 1 stack item at the
offset in the 2™ stack item.
Adds the string represented by the character array in

274 | printworldchararray 0 -2 | ZDoom the world array specified by the 1* stack item at the
offset in the 2™ stack item.
Adds the string represented by the character array in

275 | printglobalchararray 0 -2 | ZDoom the global array specified by the 1* stack item at the
offset in the 2™ stack item.

276 | setactorangle 0 -2 | ZDoom See SetActorAngle(2).

280

spawnprojectile

ZDoom

See SpawnProjectile(7).

Appendix B: PCode Reference 23
PCode Args St.Of. Ext Req Description
281 | getsectorlightlevel 0 0 | ZDoom See GetSectorLightLevel(1).
282 | getactorceilingz 0 0 | ZDoom See GetActorCeilingZ(1).
283 | getactorpositionz ZDoom Completely undefined at this time.
284 | clearactorinventory 0 -1 | ZDoom See ClearActorInventory(1).
285 | giveactorinventory 0 -3 | ZDoom See GiveActorInventory(3).
286 | takeactorinventory 0 -3 | ZDoom See TakeActorInventory(3).
287 | checkactorinventory 0 -1 | ZDoom See CheckActorInventory(2).
288 | thingcountname 0 -1 | ZDoom See ThingCountName(2).
289 | spawnspotfacing 0 -2 | ZDoom See SpawnSpotFacing(3).
290 | playerclass 0 0 | ZDoom See PlayerClass(1).
291 | andscriptvar | 1 | ZDoom | X Perform; the bitwise and operation with the specified
local variable and the stack.
292 | andmapvar 1 1 | 7Doom | x Perform§ the bitwise and operation with the specified
map variable and the stack.
293 | andworldvar 1 1 | ZDoom | X Performs 'the bitwise and operation with the specified
world variable and the stack.
Performs the bitwise and operation with the specified
294 |andglobalvar ! -1 | ZDoom | X global variable and the stack.
Performs the bitwise and operation with the specified
295 | andmaparray 1 -2 | ZDoom | X |map array at the index of the 2™ stack item and the 1%
stack item.
Performs the bitwise and operation with the specified
296 | andworldarray 1 -2 | ZDoom | X |world array at the index of the 2™ stack item and the 1%
stack item.
Performs the bitwise and operation with the specified
297 | andglobalarray 1 -2 | ZDoom | X |global array at the index of the 2™ stack item and the
1* stack item.
. Performs the bitwise exclusive or operation with the
298 | eorscriptvar ! -1 | ZDoom | X specified local variable and the stack.
Performs the bitwise exclusive or operation with the
299 | cormapvar ! -1 | ZDoom | X specified map variable and the stack.
Performs the bitwise exclusive or operation with the
300/ orworldvar ! -1 | ZDoom | X specified world variable and the stack.
Performs the bitwise exclusive or operation with the
301 | eorglobalvar ! -1 | ZDoom | X specified global variable and the stack.
Performs the bitwise excluse or operation with the
302 | eormaparray 1 -2 | ZDoom | X |specified map array at the index of the 2™ stack item
and the 1* stack item.
Performs the bitwise excluse or operation with the
303 | eorworldarray 1 -2 | ZDoom | X |specified world array at the index of the 2™ stack item
and the 1* stack item.

24 ACC++ Manual
PCode Args St.Of. Ext Req Description
Performs the bitwise excluse or operation with the
304 | eorglobalarray 1 -2 | ZDoom | X |specified global array at the index of the 2™ stack item
and the 1* stack item.
305 | orscriptvar | 1 | ZDoom | X Perform; the bitwise or operation with the specified
local variable and the stack.
306 | ormapvar 1 1 | ZDoom | X Perform§ the bitwise or operation with the specified
map variable and the stack.
307 | orworldvar 1 1 | ZDoom | X Performs 'the bitwise or operation with the specified
world variable and the stack.
Performs the bitwise or operation with the specified
308 | orglobalvar ! -1 | ZDoom | X global variable and the stack.
Performs the bitwise or operation with the specified
309 | ormaparray 1 -2 | ZDoom | X |map array at the index of the 2™ stack item and the 1%
stack item.
Performs the bitwise or operation with the specified
310 | orworldarray 1 -2 | ZDoom | X |world array at the index of the 2™ stack item and the 1%
stack item.
Performs the bitwise or operation with the specified
311 | orglobalarray 1 -2 | ZDoom | X |global array at the index of the 2™ stack item and the
1* stack item.
312 |Isscriptvar 1 -1 | ZDoom | X |Left shifts the specified local variable by the stack.
313 |Ismapvar 1 -1 | ZDoom | X |Left shifts the specified map variable by the stack.
314 | Isworldvar 1 -1 | ZDoom | X |Left shifts the specified world variable by the stack.
315 | Isglobalvar 1 -1 | ZDoom | X |Left shifts the specified global variable by the stack.
Left shifts the specified map array at the index
316 | Ismaparray ! -2 | ZDoom | X referenced by the 2™ stack item by the 1* item.
Left shifts the specified world array at the index
317 |lsworldarray ! -2 | ZDoom | X referenced by the 2™ stack item by the 1% item.
Left shifts the specified global array at the index
318 |Isglobalarray ! -2 | ZDoom | X referenced by the 2™ stack item by the 1* item.
319 | rsscriptvar 1 -1 | ZDoom | X |Right shifts the specified local variable by the stack.
320 | rsmapvar 1 -1 | ZDoom | X |Right shifts the specified map variable by the stack.
321 | rsworldvar 1 -1 | ZDoom | X |Right shifts the specified world variable by the stack.
322 |rsglobalvar 1 -1 | ZDoom | X |Right shifts the specified global variable by the stack.
Right shifts the specified map array at the index
323 | rsmaparray ! -2 | ZDoom | X referenced by the 2™ stack item by the 1* item.
Right shifts the specified local array at the index
324| rsworldarray ! -2 | ZDoom | X referenced by the 2™ stack item by the 1 item.
i Right shifts the specified global array at the index
325 | rsglobalarray ! 2 | ZDoom | X referenced by the 2™ stack item by the 1* item.
326 | getplayerinfo 0 -1 | ZDoom See GetPlayerInfo(2).

Appendix B: PCode Reference 25
PCode Args St.Of. Ext Req Description

327 | changelevel 0 -4 | ZDoom See ChangeLevel(3,4).

328 | sectordamage 0 -5 | ZDoom See SectorDamage(5).

329 | replacetextures 0 -3 | ZDoom See ReplaceTextures(2,3).

330 | negatebinary 0 0 | ZDoom | X |Performs a binary negation on the stack.

331 | getactorpitch 0 0 | ZDoom See GetActorPitch(1).

332 | setactorpitch 0 -2 | ZDoom See SetActorPitch(2).

333 prntbind 0| 1 7Doom | e by the sack & bound to the print.

334 | setactorstate 0 -2 | ZDoom See SetActorState(2,3).

335 | thingdamage2 0 -2 | ZDoom See Thing Damage2(3).

336 | useinventory 0 0 | ZDoom See Uselnventory(1).

337 | useactorinventory 0 -1 | ZDoom See UseActorInventory(2).

338 | checkactorceilingtexture | 0 -1 | ZDoom See CheckActorCeilingTexture(2).

339 | checkactorfloortexture 0 -1 | ZDoom See CheckActorFloorTexture(2).

340 | getactorlightlevel 0 0 | ZDoom See GetActorLightLevel(1).

341 | setmugshotstate 0 -1 | ZDoom See SetMugShotState(1).

342 | thingcountsector 0 -2 | ZDoom See ThingCountSector(3).

343 | thingcountnamesector 0 -2 | ZDoom See ThingCountNameSector(3).

344 | checkplayercamera 0 0 | ZDoom See CheckPlayerCamera(l).

345 | morphactor 0 -6 | ZDoom See MorphActor(1,7).

346 | unmorphactor 0 -1 | ZDoom See UnMorphActor(1,2).

347 | getplayerinput 0 -1 | ZDoom See GetPlayerInput(2).

348 | classifyactor 0 0 | ZDoom See ClassifyActor(1).

349 | printbinary 0 -1 | ZDoom Adds the binary number to the print.

350 | printhex 0 -1 | ZDoom Adds the hexadecimal number to the print.
Calls an alternative type of built in function. The first
char following the PCode is the number of arguments.

2 vt 2o x| Tt e osin e s o,
return value is pushed to the stack. If this is used in
ACSO the first two parameters are also ints.

Additional Functions

The callfunc PCode references a table of functions. These functions are handled similar
to the normal built in functions, however they are more flexible (argument count is not a constant
for example). The PCode always pushes a return value onto the stack so it must be dropped if it
is to be ignored. Continue to refer to the ZDoom wiki's built in ACS function documentation for
details on their exact operations.

26 ACC++ Manual
Function Args Ret Req
1 | GetLinetUDMFInt 2 int
2 | GetLineUDMFFixed 2 | fixed
3 | GetThingUDMFInt 2 int
4 | GetThingUDMFFixed 2 | fixed
5 | GetSectorUDMFInt 2 int
6 | GetSectorUDMFFixed 2 | fixed
7 | GetSideUDMFInt 3 int
8 | GetSideUDMFFixed 3 | fixed
9 | GetActorVelX 1 int
10 | GetActorVelY 1 int
11 | GetActorVelZ 1 int
12 | SetActivator 1 | bool
13 | SetActivatorToTarget 1 | bool
14 | GetActorViewHeight 1 int
15 | GetChar 2 |char| X
16 | GetAirSupply 1 int
17 | SetAirSupply 2 | bool
18 | SetSkyScrollSpeed 2 | bool
19 | GetArmorType 2 int
20 | SpawnSpotForced 4 | bool
21 | SpawnSpotFacingForced 3 | bool
22 | CheckActorProperty 3 | bool
23 | SetActorVelocity 6 | void
24 | SetUser Variable 3 int
25 | GetUserVariable 2 int
26 |Radius_Quake2 6 |void
27 | CheckActorClass 2 | bool
28 | SetUserArray 4 int
29 | GetUserArray 3 int
30 | SoundSequenceOnActor 2 | void
31 | SoundSequenceOnSector 3 | void
32 | SoundSequenceOnPolyobj 2 | void

	Introduction
	Introduction to the Manual
	Introduction to ACS and ACS++

	Byte Code
	Data Types and Other Numbers
	Script Types
	Script Flags
	Magic Limits

	Variable Scope and Arrays
	Detecting Byte Code Format
	ACS0 Script Directory And Byte Code
	ZDoom Enhanced Formats
	ARAY, AINI, and AIMP Chunks
	ASTR and MSTR Chunks
	LOAD Chunk
	FUNC and FNAM Chunks
	MEXP, MINI, and MIMP Chunks
	SPTR, SFLG, and SVCT Chunks
	STRL and STRE Chunks

	Appendix A: Script Optimizations
	Solving Runaway Scripts
	Avoid Providing Optional Arguments
	Use “const:” Where Possible

	Appendix B: PCode Reference
	PCode Table
	Additional Functions

